Metabolic fingerprinting of systemic sclerosis: a systematic review

Yhojan Rodriguez, Diana M. Monsalve, Mónica P. Cala, Yeny Acosta-Ampudia, Carolina Ramírez-Santana, Victoria Morales-González, Daniel Galeano-Sánchez, Jaime Enrique Covaleda-Vargas, Daniel Pardo-Rodriguez

Research output: Contribution to journalReview articlepeer-review

3 Scopus citations

Abstract

Introduction: Systemic sclerosis (SSc) is a chronic autoimmune disease, marked by an unpredictable course, high morbidity, and increased mortality risk that occurs especially in the diffuse and rapidly progressive forms of the disease, characterized by fibrosis of the skin and internal organs and endothelial dysfunction. Recent studies suggest that the identification of altered metabolic pathways may play a key role in understanding the pathophysiology of the disease. Therefore, metabolomics might be pivotal in a better understanding of these pathogenic mechanisms.

Methods: Through a systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA), searches were done in the PubMed, EMBASE, Web of Science, and Scopus databases from 2000 to September 2022. Three researchers independently reviewed the literature and extracted the data based on predefined inclusion and exclusion criteria.

Results: Of the screened studies, 26 fulfilled the inclusion criteria. A total of 151 metabolites were differentially distributed between SSc patients and healthy controls (HC). The main deregulated metabolites were those derived from amino acids, specifically homocysteine (Hcy), proline, alpha-N-phenylacetyl-L-glutamine, glutamine, asymmetric dimethylarginine (ADMA), citrulline and ornithine, kynurenine (Kyn), and tryptophan (Trp), as well as acylcarnitines associated with long-chain fatty acids and tricarboxylic acids such as citrate and succinate. Additionally, differences in metabolic profiling between SSc subtypes were identified. The diffuse cutaneous systemic sclerosis (dcSSc) subtype showed upregulated amino acid-related pathways involved in fibrosis, endothelial dysfunction, and gut dysbiosis. Lastly, potential biomarkers were evaluated for the diagnosis of SSc, the identification of the dcSSc subtype, pulmonary arterial hypertension, and interstitial lung disease. These potential biomarkers are within amino acids, nucleotides, carboxylic acids, and carbohydrate metabolism.

Discussion: The altered metabolite mechanisms identified in this study mostly point to perturbations in amino acid-related pathways, fatty acid beta-oxidation, and in the tricarboxylic acid cycle, possibly associated with inflammation, vascular damage, fibrosis, and gut dysbiosis. Further studies in targeted metabolomics are required to evaluate potential biomarkers for diagnosis, prognosis, and treatment response.

Original languageEnglish (US)
Article number1215039
JournalFrontiers in Molecular Biosciences
Volume10
DOIs
StatePublished - 2023

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)

Fingerprint

Dive into the research topics of 'Metabolic fingerprinting of systemic sclerosis: a systematic review'. Together they form a unique fingerprint.

Cite this