Resumen
Changing wildfire regimes in the western US and other fire-prone regions pose considerable risks to human health and ecosystem function. However, our understanding of wildfire behavior is still limited by a lack of data products that systematically quantify fire spread, behavior and impacts. Here we develop a novel object-based system for tracking the progression of individual fires using 375 m Visible Infrared Imaging Radiometer Suite active fire detections. At each half-daily time step, fire pixels are clustered according to their spatial proximity, and are either appended to an existing active fire object or are assigned to a new object. This automatic system allows us to update the attributes of each fire event, delineate the fire perimeter, and identify the active fire front shortly after satellite data acquisition. Using this system, we mapped the history of California fires during 2012–2020. Our approach and data stream may be useful for calibration and evaluation of fire spread models, estimation of near-real-time wildfire emissions, and as means for prescribing initial conditions in fire forecast models.
Idioma original | Inglés estadounidense |
---|---|
Número de artículo | 249 |
Páginas (desde-hasta) | 249 |
Publicación | Scientific data |
Volumen | 9 |
N.º | 1 |
DOI | |
Estado | Publicada - may. 30 2022 |
Áreas temáticas de ASJC Scopus
- Estadística y probabilidad
- Sistemas de información
- Educación
- Informática aplicada
- Estadística, probabilidad e incerteza
- Biblioteconomía y ciencias de la información