Abstract
Original language | English (US) |
---|---|
Pages (from-to) | 201-213 |
Number of pages | 13 |
Journal | Molecular Phylogenetics and Evolution |
Volume | 71 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2014 |
Fingerprint
Dive into the research topics of 'Toward a tree-of-life for the boas and pythons: Multilocus species-level phylogeny with unprecedented taxon sampling'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Molecular Phylogenetics and Evolution, Vol. 71, No. 1, 02.2014, p. 201-213.
Research output: Contribution to journal › Research Article › peer-review
TY - JOUR
T1 - Toward a tree-of-life for the boas and pythons: Multilocus species-level phylogeny with unprecedented taxon sampling
AU - Graham Reynolds, R.
AU - Niemiller, M.L.
AU - Revell, L.J.
N1 - Cited By :40 Export Date: 17 April 2018 CODEN: MPEVE Correspondence Address: Graham Reynolds, R.; Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125-3393, United States; email: [email protected] Funding details: University of Massachusetts Boston Funding details: CITES-PLS-W-2008-54 Funding details: YIBS, Institute for Biospheric Studies, Yale University Funding details: MCZ, Museum of Comparative Zoology, Harvard University Funding details: SCAS, Southern California Academy of Sciences Funding details: Department of Agriculture, Australian Government Funding details: Yale University Funding details: CITES-2012/453, MOE, Ministry of the Environment Funding details: 2011006, University of Massachusetts Boston Funding text: Funding to the authors is provided by the University of Massachusetts Boston (RGR and LJR) and the Yale Institute for Biospheric Studies, Yale University (MLN). We are extremely appreciative of the donation of tissue subsamples for this project from J. Vindum and the California Academy of Sciences, J. McGuire, C. Spencer, and the Museum of Vertebrate Zoology, UC Berkeley, and G. Schneider and R. Nussbaum and the University of Michigan Museum of Zoology. All field-collected samples for this study were obtained under University of Massachusetts Boston Institutional Animal Care and Use Committee (IACUC) Protocol No. 2011006, and the following permits: Turks and Caicos Islands : Department of Environment and Coastal Resources permit #s 1–4 RGReynolds (to R.G.R.), CITES-PLS-W-2008-54 (to R.G.R.); Bahamas : Department of Agriculture and the Bahamas Environment, Science & Technology Commission, Ministry of the Environment, CITES-2012/453 (to RGR). We thank F. Burbrink for reviewing an earlier draft of this manuscript. We are grateful to the Associate Editor and two anonymous reviewers for helpful comments on the manuscript. Appendix A References: Auliya, M., Mausfeld, P., Schmitz, A., Böhme, W., Review of the reticulated python (Python reticulatus Schneider, 1801) with the description of new subspecies from Indonesia (2002) Naturwissenschaften, 89, pp. 201-213; Austin, C., Molecular phylogeny and historical biogeography of Pacific island boas (Candoia) (2000) Copeia, 2000, pp. 341-352; Austin, C.C., Spataro, M., Peterson, S., Jordan, J., McVay, J.D., Conservation genetics of Boelen's python (Morelia boeleni) from New Guinea: reduced genetic diversity and divergence of captive and wild animals (2010) Conserv. Genet., 11, pp. 889-896; Bohm, M., Conservation status of the world's reptiles (2013) Biol. Conserv., 157, pp. 372-385; Bossuyt, F., Meegaskumbura, M., Beenaerts, N., Gower, D.J., Pethiyagoda, R., Roelants, K., Mannaert, A., Milinkovitch, M.C., Local endemism within the Western Ghats-Sri Lanka biodiversity hotspot (2004) Science, 306, pp. 479-481; Burbrink, F.T., Inferring the phylogenetic position of Boa constrictor among the Boinae (2004) Mol. Phylogenet. Evol., 34, pp. 167-180; Burbrink, F.T., Lawson, R., Slowinski, J.B., Mitochondrial DNA phylogeography of the polytypic north American rat snake (Elaphe obsoleta): a critique of the subspecies concept (2000) Evolution, 54, pp. 2107-2118; Cadle, J.E., Dessauer, H.C., Gans, C., Gartside, D.F., Phylogenetic-relationships and molecular evolution in uropeltid snakes (Serpentes, Uropeltidae) - allozymes and albumin immunology (1990) Biol. J. Linn. Soc., 40, pp. 293-320; Campbell, B.N., (1997) Hic sunt serpentes - Molecular Phylogenetics and the Boidae (Serpentes: Booidae), , Ph.D. Dissertation, Queen's University, Kingston, Ontario, Canada; Carmichael, C.K., (2007) Phylogeography of the Indonesian Water Python, Liasis mackloti ssp. (Squamata: Boidae: Pythoninae): A Comparative Approach toward Resolving Phylogeny, p. 153. , Ph.D. Dissertation, Univ. S. Mississippi; Carstens, B.C., Knowles, L.L., Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers (2007) Syst. Biol., 56, pp. 400-411; Colston, T.J., Grazziotin, F.G., Shepard, D.B., Vitt, L.J., Colli, G.R., Henderson, R.W., Hedges, S.B., Burbrink, F.T., Molecular systematics and historical biogeography of tree boas (Corallus spp.) (2013) Mol. Phylogenet. Evol., 66, pp. 953-959; Curcio, F.F., Nunes, P.M.S., Argôlo, J.S., Skuk, G., Rodrigues, M.T., Taxonomy of the South American dwarf boas of the genus Tropidophis Bibron, 1840, with the description of two new species from the Atlantic forest (Serpentes: Tropidophiidae) (2012) Herpetol. Monogr., 26, pp. 80-121; Darriba, D., Taboada, G.L., Doallo, R., Posada, D., JModelTest 2: more models, new heuristics and parallel computing (2012) Nat. Methods, 9, p. 772; de Quieroz, A., Gatesy, J., The supermatrix approach to systematics (2007) Trends Ecol. Evol., 22, pp. 34-41; Degnan, J.H., Rosenberg, N.A., Gene tree discordance, phylogenetic inference and the multispecies coalescent (2009) Trends Ecol. Evol., 24, pp. 332-340; Driskell, A.C., Ané, C., Burleigh, J.G., McMahon, M.M., O'Meara, B.C., Sanderson, M.J., Prospects for building the Tree of Life from large sequence databases (2004) Science, 306, pp. 1172-1174; Edwards, S.V., Liu, L., Pearl, D.K., High-resolution species trees without concatenation (2007) Proc. Nat. Acad. Sci. U.S.A., 104, pp. 5936-5941; Eskandarzadeh, N., Darvish, J., Rastegar-Pouyani, E., Ghassemzadeh, F., Reevaluation of the taxonomic status of sand boas of the genus Eryx (Daudin, 1803) (Serpentes: Boidae) in northeastern Iran (2013) Turk. J. Zool., 37, pp. 1-9; Felsenstein, J., Evolutionary trees from DNA sequences: a maximum likelihood approach (1981) J. Mol. Evol., 17, pp. 368-376; Felsenstein, J., (2004) Inferring Phylogenies, , Sinauer Associates, Sunderland, MA; Friesen, F.L., Congdon, B.C., Kidd, M.G., Birt, T.P., Polymerase chain reaction (PCR) primers for the amplification of five nuclear introns in vertebrates (1999) Mol. Ecol., 8, pp. 2141-2152; Gower, D.J., Vidal, N., Spinks, J.N., McCarthy, C.J., The phylogenetic position of Anomochilidae (Reptilia: Serpentes): first evidence from DNA sequences (2005) J. Zool. Syst. Evol. Res., 43, pp. 315-320; Greene, H.W., (1997) Snakes: The Evolution of Mystery in Nature, , University of California Press, Los Angeles; Guindon, S., Gascuel, O., A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood (2003) Syst. Biol., 52, pp. 696-704; Harvey, M.B., Barker, D.G., Ammerman, L.K., Chippindale, P.T., Systematics of the Morelia amethistina complex (Serpentes: Boidae) with the description of three new species (2000) Herpetol. Monogr., 14, pp. 139-185; Head, J.J., Bloch, J.I., Hastings, A.K., Bourque, J.R., Cadena, E.A., Herrera, F.A., Polly, P.D., Jaramillo, C.A., Giant boid snake from the Paleocene neotropics reveals hotter past equatorial temperatures (2009) Nature, 457, pp. 715-718; Hedges, S.B., Morphological variation and the definition of species in the snake genus Tropidophis (Serpentes, Tropidophiidae) (2002) Bull. Nat. Hist. Mus. Lond. (Zool.), 68, pp. 83-90; Hedges, S.B., Garrido, O.H., A new snake of the genus Tropidophis (Tropidophiidae) from Eastern Cuba (2002) J. Herpetol., 36, pp. 157-161; Heise, P.J., Maxson, L.R., Dowling, H.G., Hedges, S.B., Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes (1995) Mol. Biol. Evol., 12, pp. 259-265; Henderson, R.W., Hedges, S.B., Origin of West Indian populations of the geographically widespread boa Corallus enydris inferred from mitochondrial DNA sequences (1995) Mol. Phylogenet. Evol., 4, pp. 88-92; Henderson, R.W., Powell, R., (2009) Natural History of West Indian Reptiles and Amphibians, , The University of Florida Press, Gainesville, FL; Henderson, R.W., Passos, P., Feitosa, D., Geographic variation in the Emerald Treeboa, Corallus caninus (Squamata: Boidae) (2009) Copeia, 2009, pp. 572-582; Henderson, R.W., Pauers, M.J., Colston, T.J., On the congruence of morphology, trophic ecology, and phylogeny in Neotropical treeboas (Squamata: Boidae: Corallus) (2013) Biol. J. Linn. Soc.; Hynková, I., Starostová, Z., Frynta, D., Mitochondrial DNA variation reveals recent evolutionary history of main Boa constrictor clades (2009) Zool. Sci., 26, pp. 623-631; (2012), http://www.iucnredlist.org, IUCN, IUCN Red List of Threatened Species. Version 2012.2. (downloaded 14.03.13); Kaiser, H., Crother, B.A., Kelly, C.M.R., Luiselli, L., O'Shea, M., Ota, H., Passos, P., Wüster, W., Best practices: in the 21st century, taxonomic decisions in herpetology are acceptable only when supported by a body of evidence and published via peer-review (2013) Herpetol. Rev., 44, pp. 8-23; Keogh, J.S., Barker, D.G., Shine, R., Heavily exploited but poorly known: systematics and biogeography of commercially harvested pythons (Python curtus group) in Southeast Asia (2008) Biol. J. Linn. Soc., 73, pp. 113-129; Kluge, A.G., Aspidites and the phylogeny of pythonine snakes (1993) Rec. Aust. Mus. (Suppl.), 19, pp. 1-77; Larkin, M.A., Clustal W and clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948; Lawson, R., Slowinski, J.B., Burbrink, F.T., A molecular approach to discerning the phylogenetic placement of the enigmatic snake Xenophidion schaeferi among the Alethinophidia (2004) J. Zool., 263, pp. 285-294; Lawson, R., Slowinski, J.B., Crother, B.I., Burbrink, F.T., Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes (2005) Mol. Phylogenet. Evol., 37, pp. 581-601; Lee, M.S.Y., Molecular evidence and marine snake origins (2005) Biol. Lett., 1, pp. 227-330; Lemmon, A.R., Brown, J.M., Stanger-Hall, K., Lemmon, E.M., The effect of missing data on phylogenetic estimates obtained by maximum-likelihood and Bayesian inference (2009) Syst. Biol., 58, pp. 130-145; Lynch, V.J., Wagner, G.P., Did egg-laying boas break Dollo's law? Phylogenetic evidence for reversal to oviparity in sand boas (Eryx: Boidae) (2009) Evolution, 64, pp. 207-216; Maddison, W.P., Maddison, D.R., (2011) Mesquite: A Modular System for Evolutionary Analysis, , http://mesquiteproject.org, Version 2.75. ; McCartney-Melstad, E., Waller, T., Micucci, P.A., Barros, M., Draque, J., Amato, G., Mendez, M., Population structure and gene flow of the Yellow Anaconda (Eunctes notaeus) in northern Argentina (2012) PLoS ONE, 7, pp. e37473; McDowell, S.B., A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum. Part II. Aniliodea and Pythoninae (1975) J. Herpetol., 9, pp. 1-79; McMahon, M.M., Sanderson, M.J., Phylogenetic supermatrix analysis of genbank sequences from 2228 papilionoid legumes (2006) Syst. Biol., 55, pp. 818-836; Noonan, B.P., Chippindale, P.T., Dispersal and vicariance: the complex evolutionary history of boid snakes (2006) Mol. Phylogenet. Evol., 40, pp. 347-358; Noonan, B.P., Chippindale, P.T., Vicariant origin of Malagasy reptiles supports late cretaceous Antarctic land bridge (2006) Am. Nat., 168, pp. 730-741; Noonan, B.P., Sites, J.W., Tracing the origins of iguanid lizards and boine snakes of the Pacific (2010) Am. Nat., 175, pp. 61-72; Orozco-Terwengel, P., Nagy, Z.T., Vieites, D.R., Vences, M., Louis, E., Phylogeography and phylogenetic relationships of Malagasy tree and ground boas (2008) Biol. J. Linn. Soc., 95, pp. 640-652; O'Shea, M., (2007) Boas and Pythons of the World, , Princeton University Press, Princeton, New Jersey; Paradis, E., Claude, J., Strimmer, K., APE: analysis of phylogenetics and evolution in R language (2004) Bioinformatics, 20, pp. 289-290; Philippe, H., Snell, E.A., Bapteste, E., Lopez, P., Holland, P.W.H., Casane, D., Phylogenomics of eukaryotes: impact of missing data on large alignments (2004) Mol. Biol. Evol., 21, pp. 1740-1752; Posada, D., ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online (2006) Nucl. Acids Res., 34, pp. W700-W703; Puente-Rolón, A.R., Reynolds, R.G., Revell, L.J., Preliminary genetic analysis supports cave populations as targets for conservation in the endemic, endangered Puerto Rican boa (Boidae: Epicrates inornatus) (2013) PLoS ONE; Pyron, R.A., Burbrink, F.T., Extinction, ecological opportunity, and the origins of global snake diversity (2012) Evolution, 66, pp. 163-178; Pyron, R.A., Wiens, J.J., A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians (2011) Mol. Phylogenet. Evol., pp. 543-583; Pyron, R.A., Burbrink, F.T., Colli, G.R., de Oca, A.N.M., Vitt, L.J., Kuczynski, C.A., Wiens, J.J., The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees (2011) Mol. Phylogenet. Evol., 58, pp. 329-342; Pyron, R.A., Dushantha Kandambi, H.K., Hendry, C.R., Pushpamal, V., Burbrink, F.T., Somaweera, R., Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka (2013) Mol. Phylogenet. Evol., 66, pp. 969-978; Pyron, R.A., Burbrink, F.T., Wiens, J.J., A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes (2013) BMC Evol. Biol., 13, p. 93; Rage, J.-C., (1984) Serpentes: Encyclopedia of Paleoherpetology, 11. , Gustav Fischer Verlag, Stuttgart, Germany; Rawlings, L.H., Donnellan, S.C., Phylogeographic analysis of the green python, Morelia viridis, reveals cryptic diversity (2003) Mol. Phylogenet. Evol., 27, pp. 36-44; Rawlings, L.H., Barker, D., Donnellan, S.C., Phylogenetic relationships of the Australo-Papuan Liasis pythons (Reptilia: Macrostomata), based on mitochondrial DNA (2004) Aust. J. Zool., 52, pp. 215-227; Rawlings, L.H., Rabosky, D.L., Donnellan, S.C., Hutchinson, M.N., Python phylogenetics: inference from morphology and mitochondrial DNA (2008) Biol. J. Linn. Soc., 93, pp. 603-619; Reynolds, R.G., Gerber, G.P., Fitzpatrick, B.M., Unexpected shallow genetic divergence in Turks Island Boas (Epicrates c. chrysogaster) reveals single evolutionarily significant unit for conservation (2011) Herpetologica, 67, pp. 477-486; Reynolds, R.G., Niemiller, M.L., Hedges, S.B., Dornburg, A., Puente-Rolón, A.R., Revell, L.J., Molecular phylogeny and historical biogeography of West Indian boid snakes (Chilabothrus) (2013) Mol. Phylogenet. Evol., 68, pp. 461-470; Reynolds, R.G., Puente-Rolón, A.R., Reed, R.N., Revell, L.J., Genetic analysis of a novel invasion of Puerto Rico by an exotic constricting snake (2013) Biol. Invas., 15, pp. 953-959; Rivera, P.C., Di Cola, V., Martínez, J.J., Gardenal, C.N., Chiaraviglio, M., Species delimitation in the continental forms of the genus Epicrates (Serpentes, Boidae) integrating phylogenetics and environmental niche models (2011) PLoS ONE, 6, pp. e22199; Rodríguez-Robles, J.A., Stewart, G.R., Papenfuss, T.J., Mitochondrial DNA-based phylogeography of North American rubber boas, Charina bottae (serpents: Boidae) (2001) Mol. Phylogenet. Evol., 18, pp. 227-237; Ronquist, F., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space (2012) Syst. Biol., 61, pp. 539-542; Sanderson, M.J., Construction and annotation of large phylogenetic trees (2007) Aust. Syst. Bot., 20, pp. 287-301; Schleip, W.D., Revision of the genus Leiopython Hubrecht 1879 (Serpents: Pythonidae) with the redescription of taxa recently described by Hoser (2000) and the description of new species (2008) J. Herpetol., 42, pp. 645-667; Schleip, W.D., O'Shea, M., Annotated checklist of the recent and extinct pythons (Serpentes, Pythonidae), with notes on nomenclature, taxonomy, and distribution (2010) ZooKeys, 66, pp. 29-79; Segniagbeto, G.H., Trape, J.F., David, P., Ohler, A., Dubois, A., Glitho, I.A., The snake fauna of Togo: systematics, distribution and biogeography, with remarks on selected taxonomic problems (2011) Zoosystema, 33, pp. 325-360; Siler, C.D., Oliveros, C.H., Santanen, A., Brown, R.M., Multilocus phylogeny reveals unexpected diversification patterns in Asian wolf snakes (genus Lycodon) (2013) Zool. Scripta, 42, pp. 262-277; Silvestro, D., Michalak, I., RaxmlGUI: a graphical front-end for RAxML (2012) Org. Divers. Evol., 12, pp. 335-337; Slowinski, J.B., Lawson, R., Snake phylogeny: evidence from nuclear and mitochondrial genes (2002) Mol. Phylogenet. Evol., 24, pp. 194-202; Smith, H.M., Chiszar, D., Tepedelen, K., van Breukelen, F., A revision of bevelnosed boas (Candoia carinata complex) (Reptilia: Serpentes) (2001) Hamadryad, 26, pp. 283-315; Stamatakis, A., RaxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models (2006) Bioinformatics, 22, pp. 2688-2690; Stephens, M., Donnelly, P., A comparison of Bayesian methods for haplotype reconstruction from population genotype data (2003) Am. J. Hum. Genet., 73, pp. 1162-1169; Stephens, M., Smith, N., Donnelly, P., A new statistical method for haplotype reconstruction from population data (2001) Am. J. Hum. Genet., 68, pp. 978-989; Szyndlar, Z., Rage, J.-C., (2003) Non-erycine Booidea from the Oligocene and Miocene of Europe, p. 109. , Institute of Systematics and Evolution of Animals. Polish Academy of Sciences, Poland; Taylor, D.J., Piel, W.H., An assessment of accuracy, error, and conflict with support values from genome-scale phylogenetic data (2004) Mol. Biol. Evol., 21, pp. 1534-1537; Thomson, R.C., Shaffer, H.B., Sparse supermatrices for phylogenetic inference: taxonomy, alignment, rogue taxa, and the phylogeny of living turtles (2010) Syst. Biol., 59, pp. 42-58; Thomson, R.C., Shedlock, A.M., Edwards, S.V., Shaffer, H.B., Developing markers for multilocus phylogenetics in non-model organisms: a test case with turtles (2008) Mol. Phylogenet. Evol., 49, pp. 514-525; Tokar, A.A., Taxonomic revision of the genus Gongylophis Wagler 1830: G. conicus (Schneider 1801) and G. muelleri Boulenger 1892 (Serpentes Boidae) (1995) Trop. Zool., 8, pp. 347-360; Tzika, A.C., Koenig, S., Miller, R., Garcia, G., Remy, C., Milinkovitch, M.C., Population structure of an endemic vulnerable species, the Jamaican boa (Epicrates subflavus) (2008) Mol. Ecol., 17, pp. 533-544; Uetz, P., Hošek, J., (2013) The Reptile Database, , http://www.reptile-database.org/, (accessed July, 2013); Underwood, G., Stimson, A.F., A classification of pythons (Serpentes, Pythoninae) (1990) J. Zool. Lond., 221, pp. 565-603; Vences, M., Glaw, F., Phylogeography, systematics and conservation status of boid snakes from Madagascar (Sanzinia and Acrantophis) (2003) Salamandra, 39, pp. 181-206; Vences, M., Glaw, F., Kosuch, J., Bohme, W., Veith, M., Phylogeny of South American and Malagasy Boine snakes: molecular evidence for the validity of Sanzinia and Acrantophis and biogeographic implications (2001) Copeia, 2001, pp. 1151-1154; Vidal, N., Hedges, S.B., Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes (2002) C.R. Biol., 325, pp. 977-985; Vidal, N., Hedges, S.B., Molecular evidence for a terrestrial origin of snakes (2004) Proc. Roy. Soc. B (Suppl.), 271, pp. S226-S229; Vidal, N., Henderson, R.W., Delmas, A.-S., Hedges, S.B., A phylogeny of the emerald treeboa (Corallus caninus) (2005) J. Herpetol., 39, pp. 500-503; Vidal, N., Delmas, A.-S., Hedges, S.B., The higher level relationships of Alethinophidian snakes inferred from seven nuclear and mitochondrial genes (2007) Biology of the Boas and Pythons, pp. 27-33. , Eagle Mountain Publishing, LC, Eagle Mountain, Utah, R.W. Henderson, R. Powell (Eds.); Vidal, N., Rage, J.-C., Couloux, A., Hedges, S.B., Snakes (Serpentes) (2009) The Timetree of Life, pp. 390-397. , Oxford University Univ. Press, New York, S.B. Hedges, S. Kumar (Eds.); Wallach, V., Gunther, R., Visceral anatomy of the Malaysian snake genus Xenophidion, including a cladistics analysis and allocation to a new family (1998) Amphibia-Reptilia, 19, pp. 385-404; Wells, R.W., Wellington, C.R., A synopsis of the class Reptilia in Australia (1984) Aust. J. Herpetol., I, pp. 73-129; Wiens, J.J., Morrill, M.C., Missing data in phylogenetic analysis: reconciling results from simulations and empirical data (2011) Syst. Biol., 60, pp. 719-731; Wiens, J.J., Fetzner, J.W., Parkinson, C.L., Reeder, T.W., Hylid frog phylogeny and sampling strategies for speciose clades (2005) Syst. Biol., 54, pp. 719-748; Wiens, J.J., Kuczynski, C.A., Smith, S.A., Mulcahy, D.G., Sites, J.W., Townsend, T.M., Reeder, T.W., Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes (2008) Syst. Biol., 57, pp. 420-431; Wiens, J.J., Hutter, C.R., Mulcahy, D.G., Noonan, B.P., Townsend, T.M., Sites, J.W., Reeder, T.W., Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species (2012) Biol. Lett., 8, pp. 1043-1046; Wilcox, T.P., Zwickl, D.J., Heath, T.A., Hillis, D.M., Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support (2002) Mol. Phylogenet. Evol., 25, pp. 361-371; Wood, D.A., Fisher, R.N., Reeder, T.W., Novel patterns of historical isolation, dispersal, and secondary contact across Baja California in the rosy boa (Lichanura trivirgata) (2008) Mol. Phylogenet. Evol., 46, pp. 484-502; Zaher, H., Les Tropidopheoidea (Serpentes: Alethinophidea) sont ils réellement monophylétiques? Arguments en faveur de leur polyphylétisme. [The Tropidophiidae (Serpentes: Alethinophidae) are they really monophyletic? Arguments in favor of their polyphyly] (1994) C.R. Acad. Sci. Paris, 371, pp. 471-478; Zhang, P., Liang, D., Mao, R.-L., Hillis, D.M., Wake, D.B., Cannatella, D.C., Efficient sequencing of Anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs (2013) Mol. Biol. Evol., 30, pp. 1899-1915
PY - 2014/2
Y1 - 2014/2
N2 - Snakes in the families Boidae and Pythonidae constitute some of the most spectacular reptiles and comprise an enormous diversity of morphology, behavior, and ecology. While many species of boas and pythons are familiar, taxonomy and evolutionary relationships within these families remain contentious and fluid. A major effort in evolutionary and conservation biology is to assemble a comprehensive Tree-of-Life, or a macro-scale phylogenetic hypothesis, for all known life on Earth. No previously published study has produced a species-level molecular phylogeny for more than 61% of boa species or 65% of python species. Using both novel and previously published sequence data, we have produced a species-level phylogeny for 84.5% of boid species and 82.5% of pythonid species, contextualized within a larger phylogeny of henophidian snakes. We obtained new sequence data for three boid, one pythonid, and two tropidophiid taxa which have never previously been included in a molecular study, in addition to generating novel sequences for seven genes across an additional 12 taxa. We compiled an 11-gene dataset for 127 taxa, consisting of the mitochondrial genes CYTB, 12S, and 16S, and the nuclear genes bdnf, bmp2, c- mos, gpr35, rag1, ntf3, odc, and slc30a1, totaling up to 7561 base pairs per taxon. We analyzed this dataset using both maximum likelihood and Bayesian inference and recovered a well-supported phylogeny for these species. We found significant evidence of discordance between taxonomy and evolutionary relationships in the genera Tropidophis, Morelia, Liasis, and Leiopython, and we found support for elevating two previously suggested boid species. We suggest a revised taxonomy for the boas (13 genera, 58 species) and pythons (8 genera, 40 species), review relationships between our study and the many other molecular phylogenetic studies of henophidian snakes, and present a taxonomic database and alignment which may be easily used and built upon by other researchers. © 2013 Elsevier Inc.
AB - Snakes in the families Boidae and Pythonidae constitute some of the most spectacular reptiles and comprise an enormous diversity of morphology, behavior, and ecology. While many species of boas and pythons are familiar, taxonomy and evolutionary relationships within these families remain contentious and fluid. A major effort in evolutionary and conservation biology is to assemble a comprehensive Tree-of-Life, or a macro-scale phylogenetic hypothesis, for all known life on Earth. No previously published study has produced a species-level molecular phylogeny for more than 61% of boa species or 65% of python species. Using both novel and previously published sequence data, we have produced a species-level phylogeny for 84.5% of boid species and 82.5% of pythonid species, contextualized within a larger phylogeny of henophidian snakes. We obtained new sequence data for three boid, one pythonid, and two tropidophiid taxa which have never previously been included in a molecular study, in addition to generating novel sequences for seven genes across an additional 12 taxa. We compiled an 11-gene dataset for 127 taxa, consisting of the mitochondrial genes CYTB, 12S, and 16S, and the nuclear genes bdnf, bmp2, c- mos, gpr35, rag1, ntf3, odc, and slc30a1, totaling up to 7561 base pairs per taxon. We analyzed this dataset using both maximum likelihood and Bayesian inference and recovered a well-supported phylogeny for these species. We found significant evidence of discordance between taxonomy and evolutionary relationships in the genera Tropidophis, Morelia, Liasis, and Leiopython, and we found support for elevating two previously suggested boid species. We suggest a revised taxonomy for the boas (13 genera, 58 species) and pythons (8 genera, 40 species), review relationships between our study and the many other molecular phylogenetic studies of henophidian snakes, and present a taxonomic database and alignment which may be easily used and built upon by other researchers. © 2013 Elsevier Inc.
U2 - 10.1016/j.ympev.2013.11.011
DO - 10.1016/j.ympev.2013.11.011
M3 - Research Article
SN - 1055-7903
VL - 71
SP - 201
EP - 213
JO - Molecular Phylogenetics and Evolution
JF - Molecular Phylogenetics and Evolution
IS - 1
ER -