Recent precipitation trends, flash floods and landslides in southern Brazil

Alvaro Ávila, Flavio Justino, Aaron Wilson, David Bromwich, Marcelo Amorim

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

In order to understand the rising number of flash floods and landslides in the densely populated region of southeastern Brazil, this study analyzes the spatial and temporal changes in precipitation from 1978 to 2014. We focus on the sensitivity of mountainous regions, specifically the Rio de Janeiro (RJMR) and Santa Catarina (SCMR) regions. Daily rainfall observations are aggregated into annual and seasonal indexes, and RClimdex is used to evaluate a suite of precipitation and extreme event indexes. Results show positive annual and seasonal precipitation trends during all seasons except for the winter season in the RJMR. Diverse change points in their time series, spatial differences in the trends at individual stations, and trends associated with elevation suggest that despite the close proximity of these two regions, climate impacts are not uniform across all of southeastern Brazil. The majority of precipitation-related indexes present positive trends, especially in the extreme precipitation indexes (PRCPTOT, RX1day, Rx5day and R30 mm). Statistically significant positive correlations are discovered between landslides/flash floods events and annual maximum 1-day and 5-day consecutive precipitation, and these indexes may be useful indicators of natural hazard events for this region.

Original languageEnglish (US)
Article number114029
JournalEnvironmental Research Letters
Volume11
Issue number11
DOIs
StatePublished - Nov 17 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • General Environmental Science
  • Public Health, Environmental and Occupational Health

Fingerprint

Dive into the research topics of 'Recent precipitation trends, flash floods and landslides in southern Brazil'. Together they form a unique fingerprint.

Cite this