TY - JOUR
T1 - Gene flow and the genealogical history of Heliconius heurippa
AU - Salazar, Camilo
AU - Jiggins, Chris D.
AU - Taylor, Jesse E.
AU - Kronforst, Marcus R.
AU - Linares, Mauricio
N1 - Funding Information:
The authors thank Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología, Francisco José de Caldas grant 1204-05-11414 and grant 7155-CO, the Smithsonian Tropical Research Institute, where part of the laboratory work was carried out, the Biotechnology and Biological Sciences Research Council and the Royal Society (fellowship to C. Jiggins) for financial support. C. Arias and M. Melo are gratefully acknowledged for their excellent collaboration in the laboratory.
PY - 2008
Y1 - 2008
N2 - Background. The neotropical butterfly Heliconius heurippa has a hybrid colour pattern, which also contributes to reproductive isolation, making it a likely example of hybrid speciation. Here we used phylogenetic and coalescent-based analyses of multilocus sequence data to investigate the origin of H. heurippa. Results. We sequenced a mitochondrial region (CoI and CoII), a sex-linked locus (Tpi) and two autosomal loci (w and sd) from H. heurippa and the putative parental species, H. cydno and H. melpomene. These were analysed in combination with data from two previously sequenced autosomal loci, Dll and Inv. H. heurippa was monophyletic at mtDNA and Tpi, but showed a shared distribution of alleles derived from both parental lineages at all four autosomal loci. Estimates of genetic differentiation showed that H. heurippa is closer to H. cydno at mtDNA and three autosomal loci, intermediate at Tpi, and closer to H. melpomene at Dll. Using coalescent simulations with the Isolation-Migration model (IM), we attempted to establish the incidence of gene flow in the origin of H. heurippa. This analysis suggested that ongoing introgression is frequent between all three species and variable in extent between loci. Conclusion. Introgression, which is a necessary precursor of hybrid speciation, seems to have also blurred the coalescent history of these species. The origin of Heliconius heurippa may have been restricted to introgression of few colour pattern genes from H. melpomene into the H. cydno genome, with little evidence of genomic mosaicism.
AB - Background. The neotropical butterfly Heliconius heurippa has a hybrid colour pattern, which also contributes to reproductive isolation, making it a likely example of hybrid speciation. Here we used phylogenetic and coalescent-based analyses of multilocus sequence data to investigate the origin of H. heurippa. Results. We sequenced a mitochondrial region (CoI and CoII), a sex-linked locus (Tpi) and two autosomal loci (w and sd) from H. heurippa and the putative parental species, H. cydno and H. melpomene. These were analysed in combination with data from two previously sequenced autosomal loci, Dll and Inv. H. heurippa was monophyletic at mtDNA and Tpi, but showed a shared distribution of alleles derived from both parental lineages at all four autosomal loci. Estimates of genetic differentiation showed that H. heurippa is closer to H. cydno at mtDNA and three autosomal loci, intermediate at Tpi, and closer to H. melpomene at Dll. Using coalescent simulations with the Isolation-Migration model (IM), we attempted to establish the incidence of gene flow in the origin of H. heurippa. This analysis suggested that ongoing introgression is frequent between all three species and variable in extent between loci. Conclusion. Introgression, which is a necessary precursor of hybrid speciation, seems to have also blurred the coalescent history of these species. The origin of Heliconius heurippa may have been restricted to introgression of few colour pattern genes from H. melpomene into the H. cydno genome, with little evidence of genomic mosaicism.
UR - http://www.scopus.com/inward/record.url?scp=44249083566&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44249083566&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-8-132
DO - 10.1186/1471-2148-8-132
M3 - Research Article
C2 - 18454858
AN - SCOPUS:44249083566
SN - 1471-2148
VL - 8
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 132
ER -