Smart equipment failure detection with machine learning applied to thermography inspection data in modern power systems

Ana Maria Garzon, Natalia Laiton, Victor Sicacha, David F. Celeita, Trung Dung Le

Producción científica: Contribución a una conferenciaActas de congresorevisión exhaustiva

3 Citas (Scopus)

Resumen

This paper presents a novel approach to detecting equipment failures in modern power systems by leveraging machine learning techniques applied to thermography inspection data. Particularly segmentation and pixel processing to improve accurateness is highlighted in the methodology. The proposed method is capable of identifying early warning signs of equipment failure and predicting when the failure is likely to occur. The proposed approach demonstrates the potential for early detection of equipment failure in modern power systems with accurate clustering. The use of machine learning algorithms applied to thermography inspection data provides a reliable and effective way to identify and predict equipment failures, ultimately leading to improved system reliability and reduced maintenance costs.

Idioma originalInglés estadounidense
DOI
EstadoPublicada - 2023
Evento11th International Conference on Smart Grid, icSmartGrid 2023 - Paris, Francia
Duración: jun. 4 2023jun. 7 2023

Conferencia

Conferencia11th International Conference on Smart Grid, icSmartGrid 2023
País/TerritorioFrancia
CiudadParis
Período6/4/236/7/23

Áreas temáticas de ASJC Scopus

  • Inteligencia artificial
  • Ingeniería energética y tecnologías de la energía
  • Energías renovables, sostenibilidad y medio ambiente
  • Ingeniería eléctrica y electrónica
  • Control y optimización

Huella

Profundice en los temas de investigación de 'Smart equipment failure detection with machine learning applied to thermography inspection data in modern power systems'. En conjunto forman una huella única.

Citar esto