Reinforcement Learning for Service Restoration Algorithms in Distribution Networks

Pablo Alejandro Parra, David Celeita, Gustavo Ramos, Wilmar Martinez, Geraint Chaffey

Producción científica: Contribución a una conferenciaActas de congresorevisión exhaustiva

2 Citas (Scopus)

Resumen

Modern Distribution Networks (DNs) are highly susceptible to faults, which affects their dependability and reliability. The operation complexity is crucial when DNs include critical infrastructure such as distributed energy resources, storage systems, charging stations and decentralized supply. FLISR (Fault Location, Isolation and Service Restoration) relies on advanced methodologies which aim to improve the quality of service with automated algorithms. This paper proposes a novel Service Restoration approach to automatically assist DNs resupply the out-of-service unfaulted customers after an event. The approach integrates Reinforcement Learning techniques in a co-simulation environment with OpenDSS. The results and contribution of this study could improve power supply quality and reliability of DNs throughout advanced Service Restoration (SR) methodologies. The idea is validated in real-time simulation to offer a performance assessment after training with co-simulated data.

Idioma originalInglés estadounidense
DOI
EstadoPublicada - 2022
Evento2022 IEEE Industry Applications Society Annual Meeting, IAS 2022 - Detroit, Estados Unidos
Duración: oct. 9 2022oct. 14 2022

Conferencia

Conferencia2022 IEEE Industry Applications Society Annual Meeting, IAS 2022
País/TerritorioEstados Unidos
CiudadDetroit
Período10/9/2210/14/22

Áreas temáticas de ASJC Scopus

  • Ingeniería de control y sistemas
  • Ingeniería industrial y de fabricación
  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'Reinforcement Learning for Service Restoration Algorithms in Distribution Networks'. En conjunto forman una huella única.

Citar esto