TY - JOUR
T1 - Oral administration of phytochemicals protects honey bees against cognitive and motor impairments induced by the insecticide fipronil
AU - García, Lina M.
AU - Caicedo-Garzón, Valentina
AU - Riveros, Andre J.
N1 - Publisher Copyright:
© 2024 Garcia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/3
Y1 - 2024/3
N2 - Pollution produced by exposure to pesticides is a major concern for food security because the negative impacts on pollinators. Fipronil, an insecticide broadly used around the globe has been associated with the ongoing decline of bees. With a characteristic neuroactive toxicodynamic, fipronil leads to cognitive and motor impairments at sublethal dosages. Despite of regional bans, multilevel strategies are necessary for the protection of pollinators. Recent evidence suggests that specific nutrients in the diets of bees may induce protection against insecticides. Here, we evaluated whether the administration of three phytochemicals, namely rutin, kaempferol and p-coumaric acid provide protection to the Africanized honey bee Apis mellifera against oral administration of realistic dosages of fipronil. We tested the potential impairment produced by fipronil and the protection induced by the phytochemicals in learning, 24h memory, sucrose sensitivity and motor control. We found that the administration of fipronil induced a concentration-dependent impairment in learning and motor control, but not 24h memory or sucrose sensitivity across a 24h window. We also found that the administration of rutin, p-coumaric acid, kaempferol and the mixture was innocuous and generally offered protection against the impairments induced by fipronil. Overall, our results indicate that bees can be prophylactically protected against insecticides via nutrition, providing an alternative to the ongoing conflict between the use of insecticides and the decline of pollinators. As the studied phytochemicals are broadly present in nectar and pollen, our results suggest that the nutritional composition, and not only its production, should be considered when implementing strategies of conservation via gardens and co-cropping.
AB - Pollution produced by exposure to pesticides is a major concern for food security because the negative impacts on pollinators. Fipronil, an insecticide broadly used around the globe has been associated with the ongoing decline of bees. With a characteristic neuroactive toxicodynamic, fipronil leads to cognitive and motor impairments at sublethal dosages. Despite of regional bans, multilevel strategies are necessary for the protection of pollinators. Recent evidence suggests that specific nutrients in the diets of bees may induce protection against insecticides. Here, we evaluated whether the administration of three phytochemicals, namely rutin, kaempferol and p-coumaric acid provide protection to the Africanized honey bee Apis mellifera against oral administration of realistic dosages of fipronil. We tested the potential impairment produced by fipronil and the protection induced by the phytochemicals in learning, 24h memory, sucrose sensitivity and motor control. We found that the administration of fipronil induced a concentration-dependent impairment in learning and motor control, but not 24h memory or sucrose sensitivity across a 24h window. We also found that the administration of rutin, p-coumaric acid, kaempferol and the mixture was innocuous and generally offered protection against the impairments induced by fipronil. Overall, our results indicate that bees can be prophylactically protected against insecticides via nutrition, providing an alternative to the ongoing conflict between the use of insecticides and the decline of pollinators. As the studied phytochemicals are broadly present in nectar and pollen, our results suggest that the nutritional composition, and not only its production, should be considered when implementing strategies of conservation via gardens and co-cropping.
UR - http://www.scopus.com/inward/record.url?scp=85188808436&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85188808436&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0300899
DO - 10.1371/journal.pone.0300899
M3 - Research Article
C2 - 38527045
AN - SCOPUS:85188808436
SN - 1932-6203
VL - 19
SP - 1
EP - 17
JO - PLOS ONE
JF - PLOS ONE
IS - 3 March
M1 - e0300899
ER -