Inducing High Spatial Correlation with Randomly Edge-Weighted Neighborhood Graphs

Danna L. Cruz-Reyes, Renato M. Assunção, Rosangela H. Loschi

Producción científica: Contribución a una revistaArtículo de Investigaciónrevisión exhaustiva

1 Cita (Scopus)

Resumen

Traditional models for areal data assume a hierarchical structure where one of the components is the random effects that spatially correlate the areas. The conditional autoregressive (CAR) model is the most popular distribution to jointly model the prior uncertainty about these spatial random effects. A limitation of the CAR distribution is its inability to accommodate high correlations between neighboring areas. We propose a new model for areal data that alleviates this problem. We represent the map by an undirected graph where the nodes are the areas, and randomly-weighted edges connect nodes that are neighbors. The model is based on a spatially-structured, multivariate Normal/Independent(NI) distribution, in which the precision matrix is indirectly built assuming a multivariate distribution for the random edge effects. The joint distribution for the edge effects is a spatial multivariate NI distribution that induces another NI distribution for the areas’ spatial effects, which inherit its capacity to accommodate outliers and heavy-tailed behavior. Most important, it can produce a higher marginal correlation between the spatial effects than the CAR model overcoming one of the main limitations of this model. We fit the proposed model to analyze real cancer maps and compared its performance with several state-of-art competitors. Our proposed model provides better fitting in almost all cases.

Idioma originalInglés estadounidense
Páginas (desde-hasta)1247-1281
Número de páginas35
PublicaciónBayesian Analysis
Volumen18
N.º4
DOI
EstadoPublicada - 2023

Áreas temáticas de ASJC Scopus

  • Estadística y probabilidad
  • Matemáticas aplicadas

Huella

Profundice en los temas de investigación de 'Inducing High Spatial Correlation with Randomly Edge-Weighted Neighborhood Graphs'. En conjunto forman una huella única.

Citar esto