Geometric stability conditions under autoequivalences and applications: Elliptic surfaces

Producción científica: Contribución a una revistaArtículo de Investigaciónrevisión exhaustiva

Resumen

On a Weierstraß elliptic surface, we describe the action of the relative Fourier-Mukai transform on the geometric chamber of Stab(X), and in the K3 case we also study the action on one of its boundary components. Using new estimates for the Gieseker chamber we prove that Gieseker stability for polarizations on certain Friedman chamber is preserved by the derived dual of the relative Fourier-Mukai transform. As an application of our description of the action, we also prove projectivity for some moduli spaces of Bridgeland semistable objects.
Idioma originalInglés estadounidense
PublicaciónJournal of Geometry and Physics
Volumen194
DOI
EstadoPublicada - dic. 2023

Áreas temáticas de ASJC Scopus

  • Álgebra y teoría de números
  • Geometría y topología

Huella

Profundice en los temas de investigación de 'Geometric stability conditions under autoequivalences and applications: Elliptic surfaces'. En conjunto forman una huella única.

Citar esto