Estimating computational requirements in multi-threaded applications

Título traducido de la contribución: Estimación de los requisitos computacionales en aplicaciones multiproceso

Juan F. Pérez, Giuliano Casale, Sergio Pacheco-Sanchez

Resultado de la investigación: Contribución a RevistaArtículo

16 Citas (Scopus)

Resumen

Los modelos de rendimiento proporcionan un soporte eficaz para la gestión de la calidad de servicio (QoS) y los costes de las aplicaciones empresariales. Sin embargo, se necesitaría una costosa supervisión de alta resolución para obtener parámetros clave del modelo, como el consumo de CPU de las solicitudes individuales, que por lo tanto se estiman más comúnmente a partir de otras medidas. Sin embargo, los estimadores actuales son a menudo inexactos en la contabilidad de la programación en servidores de aplicaciones multihilo. Para hacer frente a este problema, proponemos una nueva regresión lineal y estimadores de máxima verosimilitud. Nuestros algoritmos toman como entradas las medidas del tiempo de respuesta y de la cola de recursos y las estimaciones de retorno del consumo de CPU para cada tipo de solicitud. Los resultados de los conjuntos de datos de aplicaciones simuladas y reales indican que nuestros algoritmos proporcionan estimaciones precisas y pueden escalar eficazmente con los niveles de enhebrado.
Idioma originalEnglish (US)
Número de artículo6926798
Páginas (desde-hasta)264-278
Número de páginas15
PublicaciónIEEE Transactions on Software Engineering
Volumen41
N.º3
DOI
EstadoPublished - mar 1 2015
Publicado de forma externa

Huella dactilar

Program processors
Linear regression
Maximum likelihood
Quality of service
Servers
Scheduling
Monitoring
Costs
Industry

All Science Journal Classification (ASJC) codes

  • Software

Citar esto

Pérez, Juan F. ; Casale, Giuliano ; Pacheco-Sanchez, Sergio. / Estimating computational requirements in multi-threaded applications. En: IEEE Transactions on Software Engineering. 2015 ; Vol. 41, N.º 3. pp. 264-278.
@article{a6838ca108de43a59241a7ac65e81b8a,
title = "Estimating computational requirements in multi-threaded applications",
abstract = "Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the CPU consumption of individual requests, which are thus more commonly estimated from other measures. However, current estimators are often inaccurate in accounting for scheduling in multi-threaded application servers. To cope with this problem, we propose novel linear regression and maximum likelihood estimators. Our algorithms take as inputs response time and resource queue measurements and return estimates of CPU consumption for individual request types. Results on simulated and real application datasets indicate that our algorithms provide accurate estimates and can scale effectively with the threading levels.",
author = "P{\'e}rez, {Juan F.} and Giuliano Casale and Sergio Pacheco-Sanchez",
year = "2015",
month = "3",
day = "1",
doi = "10.1109/TSE.2014.2363472",
language = "English (US)",
volume = "41",
pages = "264--278",
journal = "IEEE Transactions on Software Engineering",
issn = "0098-5589",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "3",

}

Estimating computational requirements in multi-threaded applications. / Pérez, Juan F.; Casale, Giuliano; Pacheco-Sanchez, Sergio.

En: IEEE Transactions on Software Engineering, Vol. 41, N.º 3, 6926798, 01.03.2015, p. 264-278.

Resultado de la investigación: Contribución a RevistaArtículo

TY - JOUR

T1 - Estimating computational requirements in multi-threaded applications

AU - Pérez, Juan F.

AU - Casale, Giuliano

AU - Pacheco-Sanchez, Sergio

PY - 2015/3/1

Y1 - 2015/3/1

N2 - Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the CPU consumption of individual requests, which are thus more commonly estimated from other measures. However, current estimators are often inaccurate in accounting for scheduling in multi-threaded application servers. To cope with this problem, we propose novel linear regression and maximum likelihood estimators. Our algorithms take as inputs response time and resource queue measurements and return estimates of CPU consumption for individual request types. Results on simulated and real application datasets indicate that our algorithms provide accurate estimates and can scale effectively with the threading levels.

AB - Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the CPU consumption of individual requests, which are thus more commonly estimated from other measures. However, current estimators are often inaccurate in accounting for scheduling in multi-threaded application servers. To cope with this problem, we propose novel linear regression and maximum likelihood estimators. Our algorithms take as inputs response time and resource queue measurements and return estimates of CPU consumption for individual request types. Results on simulated and real application datasets indicate that our algorithms provide accurate estimates and can scale effectively with the threading levels.

UR - http://www.scopus.com/inward/record.url?scp=84925135842&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84925135842&partnerID=8YFLogxK

U2 - 10.1109/TSE.2014.2363472

DO - 10.1109/TSE.2014.2363472

M3 - Article

VL - 41

SP - 264

EP - 278

JO - IEEE Transactions on Software Engineering

JF - IEEE Transactions on Software Engineering

SN - 0098-5589

IS - 3

M1 - 6926798

ER -