An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture

Sergio Cantillo-Luna, Ricardo Moreno-Chuquen, Jesus Lopez-Sotelo, David Celeita

Producción científica: Contribución a una revistaArtículorevisión exhaustiva


This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread use of intra-day DERs and new market perspectives. The proposed model was tested with hourly wholesale electricity price data from Colombia, and the results were compared with different state-of-the-art forecasting baseline-tuned models such as Holt–Winters, XGBoost, Stacked LSTM, and Attention-LSTM. The findings show that the proposed model outperforms these baselines by effectively incorporating nonlinearity and explicitly modeling the underlying data’s behavior, all of this under four operating scenarios and different performance metrics. This allows it to handle high-, medium-, and low-variability scenarios while maintaining the accuracy and reliability of its predictions. The proposed framework shows potential for significantly improving the accuracy of electricity price forecasts, which can have significant benefits for making informed decisions in the energy sector.

Idioma originalInglés estadounidense
Número de artículo6767
EstadoPublicada - oct. 2023

Áreas temáticas de ASJC Scopus

  • Energías renovables, sostenibilidad y medio ambiente
  • Tecnología del combustible
  • Ingeniería (miscelánea)
  • Ingeniería energética y tecnologías de la energía
  • Energía (miscelánea)
  • Control y optimización
  • Ingeniería eléctrica y electrónica


Profundice en los temas de investigación de 'An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture'. En conjunto forman una huella única.

Citar esto