Sesion IV — Vulnerabilidades y ciber amenazas

ChaosXploit: A Security Chaos Engineering
framework based on Attack Trees

Sara Palacios Chavarro®,

Daniel Dl’aZ—L(')pezl,

Pantaleone Nespoli?

1School of Engineering, Science and Technology, Universidad del Rosario, Bogot4, Colombia
{sara.palaciosc, danielo.diaz} @urosario.edu.co
2Department of Information and Communications Engineering, University of Murcia, 30100, Murcia, Spain
pantaleone.nespoli@um.es

Abstract—Security incidents may have several origins. How-
ever, many times they are caused due to components that are
supposed to be correctly configured or deployed. Traditional
methods may not detect those security assumptions, and new
alternatives need to be tried. Security Chaos Engineering (SCE)
represents a new way to detect such failing components to
protect assets under cyber risk scenarios. This paper proposes
ChaosXploit, a security chaos engineering framework based on
attack trees, which leverages the chaos engineering methodology
along with a knowledge database composed of attack trees to
detect and exploit vulnerabilities in different targets as part of
an offensive security exercise. Once the proposal is explained,
a set of experiments are conducted to validate the feasibility of
ChaosXploit to validate the security of cloud managed services,
i.e. Amazon buckets, which may be prone to misconfigurations.

Index Terms—Security Chaos Engineering, attack trees, cloud
managed services, vulnerabilities

Contribution type: Original research

I. INTRODUCTION

Site Reliability Engineering (SRE) is defined as a discipline
focused on improving systems’ design and operation to make
them more scalable, reliable, and efficient [1]. Although SRE
has been approached with different methodologies, over the
last ten years, a new approach for testing the resiliency
of distributed systems has emerged [2], which is known as
Chaos Engineering (CE). CE is used to identify the system’s
immunities when damage is injected, so vulnerabilities can
be found and subsequently mitigated. CE tests are designed
to “build confidence in the system’s capability to withstand
turbulent conditions in production” [3].

Designing CE experiments implies defining a prepared and
controlled environment to analyze a target system [4] and
applying a scientific method that allows one to observe the
environment, define a set of hypotheses, and validate them.
CE has proven to be extremely useful in validating attributes
of reliability and availability in a production environment.
Nevertheless, checking these elements may not be enough
if the ultimate goal is a holistic validation of the system’s
security level. It might be the case in different distributed
systems, such as secure IoT services [5] or personal data
managers with high-security requirements [6].

Considering what was previously said, some efforts have
come up towards applying CE to cybersecurity in the last

five years, known as Security Chaos Engineering (SCE). In
particular, SCE aims to use the CE principles to evaluate the
three most important attributes of a system from a holistic
cybersecurity perspective, i.e., confidentiality, integrity, and
availability [7].

Noting that this new methodology can have a great impact
on new developments by reducing vulnerabilities through
experimentation, we have decided to follow this innovative
line to provide a new security CE framework based on attack
trees, known as ChaosXploit.

The main contributions of this paper are summarized as
follows:

¢ The proposal of a SCE framework named ChaosXploit,
which uses attack trees as the main flowchart for the ex-
ecution of attacks, and contains three main components:
an observer, an experiment runner, and a knowledge
database.

o The design of an attack tree that pursues an attack goal
of extraction or modification of information of AWS S3
buckets that enriches the knowledge database of ChaosX-
ploit.

o The execution of a set of experiments that validates the
feasibility of ChaosXploit to execute an attack tree over
a specific target, i.e., AWS S3 bucket, exposing multiple
misconfigurations.

This paper is structured as follows: Section II collects the
most recent works proposed related to SCE, exploring their
pros and cons. Then, Section III describes ChaosXploit, our
proposed framework to conduct SCE experiments. Next, in
Section IV some experiments over ChaosXploit are proposed
are executed. Finally, Section V concludes the work, showing
some future work that can improve our proposal.

II. STATE OF THE ART

Several research works have been proposed in the literature
so far that leverage the robust capabilities of CE. Nevertheless,
the application of the methodology, together with its definition,
has been ambiguous.

Since the release of Chaos Monkey in 2011 by Netflix [8],
CE has been chiefly applied to test the resilience of cloud and
virtualized infrastructures, arguing on the potential benefits
that the chaotic methodology could bring.

130

Sesion IV — Vulnerabilidades y ciber amenazas

In this sense, Camacho et al. [9] proposed Pystol, a fault
injection platform to test the resiliency of hybrid-cloud sys-
tems in adverse circumstances. Available as an open-source
framework, Pystol exploits CE’s abilities in the form of a Soft-
ware Product Line (SPL) that can be mounted on top of cloud
ecosystems. The platform is then tested in a production-ready
environment, executed using standard Kubernetes objects and
APIs and Amazon Web Services to deploy the cluster with
three use cases.

Furthermore, the work in [10] presented ChaosOrca, an
open-source CE-based fault injector for system calls in con-
tainerized applications. That is, the system can estimate the
self-protection capability of any Docker-based microservice
concerning system call errors. In particular, ChaosOrca for-
malizes the steady-state of the container by automatically
recording several system metrics (e.g., CPU and RAM con-
sumption, network I/O). Then, perturbations are injected into
the system calls invoked by the dockerized application in an
isolated fashion, without impacting the normal operations of
possible other containers. The prototype is tested in three case
studies of Docker microservices, namely Torrent, Nginx, and
Bookinfo, showing promising results in detecting resilience
weaknesses.

Moreover, Zhang et al. [11] proposed ChaosMachine, an
open-source and extensible CE system in Java aiming to
analyze the exception-handling capabilities in production en-
vironments. So, ChaosMachine can reveal potential resilience
problems of try-catch blocks with an architecture composed of
three components: i) a monitoring sidecar, ii) a perturbation
injector, and iii) the chaos controller. The framework is then
tested with three large-scale open-source Java applications
summing 630k code lines with realistic workloads, demon-
strating its capacities in production environments.

Recently, the main target of CE has been slightly moved
from resilience to including security concerns surrounding a
system. Assuming that security failures are going to happen
doubtless, SCE aims at testing the security controls of a system
through proactive experiments and, thus, building confidence
in the system’s capabilities to defend against malicious condi-
tions. Unfortunately, since this paradigm change has happened
lately, the amount of academic work and tools are still scarce.
To this extent, ChaoSlingr is the first open-source software
tool to demonstrate the possibility of applying the principles
of CE to information security'. The system was designed to
operate on AWS by a team at UnitedHealth Group led by
Aaron Rinehart to exhibit a simplified manner for writing se-
curity chaos experiments [12]. From the main project, several
organizations have started to utilize ChaosSlingr to design their
chaotic experiments.

Additionally, the work in [7] presented CloudStrike, a
software tool that applies Risk-Driven Fault Injection (RDFI)
to cloud infrastructures. For the sake of the reader, the tool
was firstly proposed in [13]. Specifically, RDFI extends the
application of CE to include cloud security without losing

Thttps://github.com/Optum/ChaoSlingr

the resilience viewpoint, i.e., by injecting security faults using
attack graphs. The SCE-based proposal is then tested in some
cloud services of leading platforms, namely, AWS and Google
Cloud Platform. Interestingly, the authors claim they compute
the risk to which the assets are exposed using the CVSS.
Later on, the same authors leveraged the SCE strategies to
test another proposal, CSBAuditor, a cloud security framework
that can constantly monitor a specific cloud infrastructure to
detect possible malicious activities [14].

Also, the application of SCE to enhance API security is
defined in [15]. Particularly, the authors propose utilizing this
methodology to test the configuration of the API’s security
controls, exposing early vulnerabilities.

III. PROPOSAL OF CHAOSXPLOIT

This section describes ChaosXploit, a SCE-powered frame-
work composed of different modules that support the appli-
cation of CE methodology to test security in different kinds
of information systems. The architecture of the proposal is
depicted in Figure 1, and each internal module is described in
the following sections.

A. Knowledge database

The knowledge database is responsible for providing the
steps required to conduct an offensive SCE experiment exe-
cuted by a team (blue team) interested in maturing a defensive
strategy. Thus, this module is composed of a set of attack trees
and a hypothesis generator.

1) Attack trees: This module is in charge of delivering
the intelligence for executing the SCE experiments. Such
intelligence is represented by different attack trees, where each
tree clusters different branches focused on achieving a specific
attack goal, e.g., gaining access to data stored in a cloud
storage solution. So, different attack goals may be pursued as
attack trees are contained in the knowledge database. Each
branch of an attack tree gathers different offensive actions
that may be conducted to achieve the final attack goal, where
an action may be a python script, an HTTP request, or
some process to be run on the operating system. It is worth
mentioning that attack trees for different types of targets may
be defined, such as trees for user applications, managed cloud
services, Kubernetes, and network devices, among others.

2) Hypothesis Generator: The intelligence contained in the
attack trees needs to be converted to a hypothesis so it can
be consumed by the other modules of ChaosXploit. So, the
Hypothesis Generator is responsible for translating the branch
actions contained in an attack tree into a form readable for the
module that executes the SCE experiments, i.e. the exploiter.
Each hypothesis generated by this module is a statement about
the system being tested that must be refuted or confirmed by
the SCE experiments, e.g. an organization will not expose
private data when the recognition tool Foca® is pointed out
to the main domain.

Zhttps://github.com/ElevenPaths/FOCA

131

Sesion IV — Vulnerabilidades y ciber amenazas

Observer

’ % Steady State ValidatorH @ Continuous Validator H@ Terminator

SCE Experiments Runner

@ RollBack
=% Runner

Attack‘Goats @ Exploiter
Decider

Connector fe——>

Target

Knowledge DataBase

6@ Hypothesis

Generator
User Applications Managed Cloud Kubernetes- ‘
Tree Services Tree related Tree

Network-related
Tree

Figure 1: Proposed architecture of ChaosXploit

B. Observer

The observer groups all the activities related to the observa-
tion of both the target and the SCE experiment. This module
is important because it allows for monitoring of specific
conditions of the target before, along, and after the execution
of the SCE experiments. This module is composed of a steady-
state validator, a continuous validator, and a terminator.

1) Steady state Validator: The steady-state validator is in
charge of verifying the steady-state hypothesis in the target that
represents estable conditions. These conditions will depend on
the attack goal and the specific hypothesis being tested. For
example, a normal condition may be a well-formed response
from a web server.

2) Continuous validator: The continuous validator permits
verifying specific signals detected from the target, which
allows determining the results of an interaction between the
exploiter and the target. These signals are particularly impor-
tant because they may indicate if a current action included in a
branch of an attack tree was successful, so the following action
in the branch should be triggered, or they simply may indicate
that the target is not vulnerable and the following actions of
the branch should not be executed.

3) Terminator: The terminator observes the failure states
of the SCE experiment to define the actions to follow conse-
quently. For example, if the target gets unresponsive due to the
execution of a SCE experiment, a failure state will be launched
and the terminator will be able to inform the Rollback Runner
so it can restore the target.

C. SCE Experiments Runner

The SCE Experiments Runner is in charge of the SCE
experiment’s execution over a target to validate or refute a
hypothesis. This component is fundamental because it not only
leads the interaction with the target but also centralizes the
communication with the observer and knowledge database. It
consists of three main elements: attack goal decider, exploiter,
and rollback runner.

1) Attack goal decider: The attack goal decider receives a
defined goal attack as input to be tested over a target. Such
attack goal may be contributed by the user of ChaosXploit who
is interested in probing if a particular system is susceptible to
a specific attack. Then, the attack goal decider requests the
knowledge database for the proper attack tree that matches
such a defined goal.

2) Exploiter: The exploiter executes the SCE experiment
over a target to validate or refute a hypothesis. With such
purpose, the exploiter performs the offensive actions defined
previously by the attack tree obtained from the knowledge
database. Besides, it is also able to collect information about
specific responses coming from the target to define the next
step in an attack.

3) Rollback runner: An experiment may contain a sequence
of actions that reverse what was undone during the experiment.
These actions will be called by the Rollback Runner after
the Continuous Validator finishes its execution regardless of
whether an error occurred in the process or not.

D. Connector

The connector is responsible for searching for the most
suitable extension to connect to the target on which the user

132

Sesion IV — Vulnerabilidades y ciber amenazas

SCE Experiments Runner Knowledge DB

®

Observer Connector Target

RollBack Runner| |Attack Goal Decider| | Exploiter Hypothesis Generator

User

Steady-State Validator

Cont. Validator| | Terminator

get_elemets(Goal)
[Steady State, Rollback, Hypothesis] I

get_execution(Goal, Target) I

set_extension(Target) Connect(Target)

I Connection Status

IConnect\on Statusl
el

set_steady_state(Target)

Connect(Target) Connect(Target)

Connection Status IConneciion Statu

I Status

start()

R\exptom

validate_steady_state(Target)

terminate

() o
Status I‘__‘:Status: invalid

Connect(Target) Connect(Target)

Status

Status

Connection Status Connection Statusl

terminate()

"'l:jstatus: invalid

-—

run_rollback()
Result

Final Status

Figure 2: Flow diagram of the execution of a SCE experiment in ChaosXploit

wants to run the experiment. Once an extension has been
defined, the connector establishes the link with the target and
tests that the scenario is adequate to run the SCE experiment.

The interactions between the components of ChaosXploit
are shown in Figure 2. First, the user of ChaosXploit requests
the Attack Goal Decider the execution of a SCE experiment,
informing: the attack goal to be considered and the target
where the SCE experiment should be addressed. Then, the
Attack Goal Decider gets from the knowledge database the
steady-state of the experiment, the rollback procedure, and
the most proper hypothesis (attack tree) that matches the
attack goal desired by the user. The Attack Goal Decider also
requests to the Connector the preparation of the extension
for the target informed by the user. When a connection to
the target is established and a hypothesis is defined, then the
Attack Goal Decider does the following actions: i) sets the
steady-state of the experiment in the Observer, ii) starts the
execution of the steps defined in the first branch of the attack
tree with the help of the Exploiter, and iii) keeps continuous
communication with the Continuous Validator to monitor the
execution of the exploitation in progress and in that way be
aware of the attack goal was achieved. If the Continuous
Validation fails, then the termination process is activated by
the Terminator. The experiment ends with the execution of the
Rollback Runner to restore everything.

IV. EXPERIMENTS

Multiple experiments have been conducted using the
ChaosXploit proposal mentioned in Section III, which are also

available in the repository of this project’. Based on the fact
that AWS S3 buckets and Elasticsearch databases account for
nearly 45% of the cloud misconfigured and compromised tech-
nologies [16], ChaosXploit focuses on evaluating the security
of the AWS S3 service on this experiment. It considers the
possible configurations and whether they permit establishing
a connection, whether they are public or private buckets or
whether they permit getting the configured Access Control
Lists (ACLs) which allow managing the access to the buckets
and their objects. These lists define which AWS accounts or
groups have access and what kind of permissions they have.

This section of experiments is composed of the following
subsections: Settings IV-A, where the hardware and software
requirements to develop the experiment, are specified. Defini-
tion of the knowledge database IV-B, where the attack tree is
presented together with the specification of the branch chosen
for the experiment. SCE experiment IV-C in which the steady-
state and the hypothesis of the experiment are defined, as well
as the input parameters and the monitored variables. Finally,
Results Analysis IV-D presents the results obtained.

A. Settings

The following setup was used to make use of ChaosXploit:

o Hardware: the experiment was executed on a Fedora OS
with AMD Ryzen 5 3500U CPU, 8GB RAM, and 512GB
SSD.

o Internal Components: Some of the components of
ChaosXploit have been built over existing modules of
ChaosToolkit, as it is an open-source framework that

3https://github.com/SaraPalaciosCh/ChaosXploit

133

Sesion IV — Vulnerabilidades y ciber amenazas

allows its extension and improvement to make it oriented
to security purposes. ChaosToolkit was chosen since this
tool simply allows automation of the experiments using
Jjson files. The connection to the different targets (buckets)
was done using boto3 (SDK for python).

o Environment: The first version of ChaosXploit should be
installed on a virtual environment with python3.7 and
Chaostoolkit installed.

B. Definition of the Knowledge Database

In Figure 3 it is possible to observe the attack tree imple-
mented for this experiment. It starts with the attacker finding
public buckets by either enumerating the names or searching
sites such as the Wayback Machine. Then, the next action
seeks to confirm if the attacker succeeds in establishing a
connection to the bucket. Once the connection is established,
the attacker can follow one of the 4 different branches to reach
the attack goal identified in the tree as the last box: extract or
modify information. These paths are described as:

« Branch 1: where the attacker has gained access to the
bucket without any permission or authentication process.
Once inside, he can inspect the objects contained in the
storage system, and read the Access Control Lists (ACL).
If these ACLs have permissions open to the entire public,
then the attacker will be able to reach the attack goal.

« Branch 2: it is a path taken by the attacker in case the
bucket has the access permissions properly configured.
At this point, the attacker could make use of possible
vulnerabilities in the AWS access control system, also
known as IAM, to then elevate his privileges and gain
access to the bucket’s information, thus achieving the
attack goal.

e Branch 3: in which the attacker can use brute-forcing
techniques to compromise admin credentials and thereby
gain access.

« Branch 4: where the attacker can use social engineering
techniques such as phishing to compromise credentials
and gain access.

It is important to note that the execution of the first branch
was included in the scope of this project, as the actions
included in such branch were automatable completely. Other
branches could also be implemented through a combination of
manual and automatic actions.

C. SCE experiment

The goal of this experiment stems from the fact that Amazon
S3 allows data to be stored and protected from unauthorized
access with encryption features and access management tools.
However, the shared responsibility model of cloud services
has led the creators of this type of storage to commit flaws
during security configuration. Leaving the information open to
the public, putting its confidentiality, integrity, and availability
at risk.

Based on the goal of the attack tree (Extract or modify
Information), it is possible to define the experiment following
the scientific method as follows:

: : Exploit AWS Bruteforce m
: ACS admin

: buck Il vulnerability credntials

Privilege Comprqmise Compromi_se

: Bl escalation 2l AWS admin

: : credentials credentials

Figure 3: Attack Tree for the experimental scenario, highlight-
ing the implemented path

o Observability: Public AWS S3 Buckets.

« Steady State: The buckets to be analyzed suggest having
the access controls properly configured.

« Hypothesis: if you try to access the objects stored in the
buckets, then you will not be able to see their contents
or the associated access controls since they are properly
configured to prevent information leaks.

Implementation of the first branch of the attack tree defined
for this scenario is described below. First, the finding of
public buckets was done using enumeration techniques by
considering regular expressions. Since Amazon S3 has defined
a series of requirements for the bucket names, this makes
it very easy for the attacker to enumerate them. Then, the
connection check was performed using boto3, the AWS SDK
for python. With this step, we were able to clean up the buckets
leaving out those that no longer exist or had invalid names.
Afterward, ChaosXploit inspects the buckets to identify if their
objects can be read and finally searches if there are buckets
that allow access to the ACLs.

As shown in Table I, different parameters were considered
as input values for ChaosXploit. First, the domain is an op-
tional input that should contain the name of the organization to
be analyzed. We have considered this option since ChaosXploit
can be used as an internal audit tool. Therefore, with this
argument, the enumeration of the buckets will be limited to all
those that are related to the given domain. In case this input
is not provided, ChaosXploit will generate a list of names
using brute-force, wordlists, and bucket naming rules defined
by AWS. Second, the number of threads is considered as an
input, so that the process of connecting and reading buckets

134

Sesion IV — Vulnerabilidades y ciber amenazas

may be performed in parallel on the different cores, according
to the defined thread’s value. Third, the mode indicates the type
of analysis to be performed, whether it aims to find Object-
Collectable or ACL-Collectable buckets. The last input, output,
is a file name used to store the results and feed the ChaosXploit
continuous validator.

Regarding the monitored variables, three were considered:
i) Buckets that have public objects that can be accessed by
anyone, denoted by Object-Collectable in Table I, ii) Buckets
that have public ACLs, and can be accessed by anyone denoted
by ACL-Collectable and iii) the Permissions obtained from
the ACLs.

Monitored Variables

Description
No. of buckets that have public objects
and are accessible by anyone
No. of buckets that have public ACLs
and are accessible by anyone

Name

Object-Collectable

ACL-Collectable

Permissions No. of permissions obtained from the ACL.
Input Parameters
Name Description
. . Domain name to which
Domain(Optional) you want to identify the buckets
Threads Execution Threads
Mode Object-Collectable or ACL-Collectable
Output Output File

Table I: Monitored variables and input parameters for experi-
ments.

D. Results Analysis

ChaosXploit’s functionality was tested using a list of 3k
buckets obtained through a bucket name enumeration process
which can be performed using tools such as s3enum®*, buck-
etkicker® or Sublist3r°.

As seen in the upper left part of Figure 4, all possible
actions of the attack tree were executed by ChaosXploit. It
is possible to identify that for the second one (Check possible
connection), out of the 3k buckets listed, 271 did not allow
a connection. This is because the bucket no longer existed or
had an invalid name, e.g it did not follow the common bucket
naming characteristics proposed by AWS. This leaves us with
2729 buckets remaining to test.

In the case of the third act of the attack tree (Inspect
collectible buckets), 2454 buckets were well configured and
passed the steady-state defined in our experiment, since they
did not allow reading files or permissions listed in the ACLs.
However, 275 did not pass validation.

The lower left part of Figure 4 shows the file extensions that
were extracted from 252 buckets that were Object Collectable.
From each bucket, only the first 50 objects were collected,
since some buckets had more than 100000 files stored, for a
total of 7465 collected files. Of all these files it was possible
to identify that more than 2000 were images (jpg and png)

“https://github.com/koenrh/s3enum
Shttps://github.com/craighays/bucketkicker
Shttps://github.com/aboul3la/Sublist3r

and approximately 1250 were categorized as others because
they could be log files, folders, or had no extension.

To analyze the users and user groups associated with each
bucket we first need to know that Amazon S3 has a set of
predefined groups:

« AuthenticatedUsers group representing all AWS ac-
counts.

« AllUsers group allowing anyone in the world to access
the resource.

« LogDelivery group allowing access logs to be written to
the bucket.

Additionally, AWS defines also the following types of
permissions:

« READ Allows grantee to list the objects in the bucket.

« WRITE Allows grantee to create new objects in the
bucket. For the bucket and object owners of existing
objects, also allows deletions and overwrites of those
objects.

« READ_ACP Allows grantee to read the bucket ACL

« WRITE_ACP Allows grantee to write the ACL for the
applicable bucket.

« FULL_CONTROL Allows grantee the READ, WRITE,
READ_ACP, and WRITE_ACP permissions on the
bucket

In the upper right part of Figure 4 is possible to identify that
92 of the 257 buckets allowed the extraction of the ACLs. Up
to 13 permissions per bucket were identified. These showed
information about the user who owned the bucket, known as
CanonicalUser by AWS, or about the user groups that had
access to it. Then, it is worth noting that for canonical users
the FULL_CONTROL permission was enabled for 84 buckets
(91.3%), and in the case of the user groups, 64 (69.5%) of them
allow the reading of the stored objects (READ permission)
and 89 (96.7%) allow the reading of the ACLs (READ_ACP
permission).

Finally, we analyze the results of those buckets that allowed
the extraction of both objects and ACLs. As seen in the
lower right part of Figure 4, 69 buckets (25%) allowed both
tasks to be performed. These were filtered by the AllUsers
and AuthenticatedUsers user groups and it was identified that
41(38.3%) from the AllUsers group and 17 (29.8%) from the
AuthenticatedUsers group were allowed to read the ACLs and
the objects. Nevertheless, it was identified that 11 buckets
(10.3%) from the AllUsers group and 11 buckets (19.3%)
from the AuthenticadedUsers group allowed the modification
of their content (WRITE permission) and the alteration of the
ACLs (WRITE_ACP permission), indicating a big flaw that
could compromise severally the confidentiality, integrity, and
availability of the stored data.

With these results, we have noticed the importance of not
only providing a tool for the detection of flaws or vulnerabil-
ities but also seeing it as an aid to infer possible mitigations
to prevent the exploitation of such vulnerabilities.

135

Sesion IV — Vulnerabilidades y ciber amenazas

Access
Denied
2454

Connection
Refused
271

Types of files collected onv252 Objects
Collectable buckets

Types of files

Number of files

Permissions identified in 92 ACL Collectable buckets

@ Canonical User

75 @ Group
64
50
38 38 37 37
25
11
o I
FULL_CONTROL READ READ_ACP WRITE ~ WRITE_ACP

-> Identified permissions in 69 Objects Collectable and ACL
Collectable buckets

00

@ READ_ACP @ READ @ FULL_CONTROL WRITE WRITE_ACP

AllUsers
slesnpeieonuayiny

Figure 4: Results of the execution of each action included in the first branch of the attack tree

V. CONCLUSIONS AND FUTURE WORK

No one could expect the impactful digital revolution we
live in, changing substantially how we live our lives with
great benefit. On the downside, such a change also implies the
existence of ill-motivated entities that constantly try to attack
connected systems to damage the confidentiality, integrity,
or availability of the provided services. Such threat entities
use increasingly advanced techniques, for example, based on
malware campaigns [17] or threats addressed to a specific
technology [18]. Over the last ten years, a novel paradigm
has emerged, the so-called Chaos Engineering, whose main
objective consists of testing the resiliency of distributed and
complex systems. More recently, the paradigm has evolved to
embrace the entire cybersecurity ecosystem, i.e., the Security
Chaos Engineering, to defend the system assets against cyber-
attacks through continuous and rigorous experimentations on
possible security holes and consequent mitigations.

In this paper, we proposed ChaosXploit, a SCE-powered
framework that can conduct Security Chaos Engineering ex-
periments on different target architectures. Based on the hy-
pothesis generated by the knowledge database and the attack
representations, ChaosXploit executes SCE experiments over
a target to find a potential security problem as an ultimate
goal. Also, ChaosXploit features an observer which is in
charge of verifying the change between the steady state of
a certain hypothesis and the current state of the system. To
prove the capabilities of ChaosXploit, a set of experiments was
conducted on several AWS S3 buckets, evaluating their secu-
rity characteristics with SCE. Results demonstrated that our
approach can be successful, highlighting several unprotected

buckets for a specific attack path. ChaosXploit was made
publicly available for the cybersecurity community through
the repository of the project’.

Future work will explore the possibility of widening the
ChaosXploit framework target architectures to include other
use cases, systems, or providers. Besides, integrating a recom-
mendation module to suggest countermeasures once a security
flaw is discovered is worth investigating. Moreover, the per-
formance of ChaosXploit should be further evaluated to prove
its usefulness in performance-demanding scenarios.

ACKNOWLEDGMENT

This work has been supported by Universidad del Rosario
(Bogota) through the project “IV-TFA043 - Developing Cyber
Intelligence Capacities for the Prevention of Crime”.

REFERENCES

[1] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site Reliability
Engineering: How Google Runs Production Systems, 1st ed. O’Reilly
Media, Inc., 2016.

[2] A. Basiri, L. Hochstein, N. Jones, and H. Tucker, “Automating chaos
experiments in production,” CoRR, vol. abs/1905.04648, 2019. [Online].
Available: http://arxiv.org/abs/1905.04648

[3] “Principles of chaos engineering,” https:/principlesofchaos.org/, last
time accessed: 2021-11-16.

[4] M. Pawlikowski, Chaos Engineering: Site reliability through controlled

disruption. Manning, 2021.
[5] D. Diaz-Lépez, M. Blanco Uribe, C. Santiago Cely,
D. Tarquino Murgueitio, E. Garcia Garcia, P. Nespoli, and

F. Gémez Maiarmol, “Developing secure iot services: A security-
oriented review of iot platforms,” Symmetry, vol. 10, no. 12, 2018.
[Online]. Available: https://www.mdpi.com/2073-8994/10/12/669

7https://github.com/SaraPalaciosCh/ChaosXploit

136

Sesion IV — Vulnerabilidades y ciber amenazas

[6] D. Diaz-Lépez, G. Délera Tormo, F. Gémez Marmol, J. M. Alcaraz
Calero, and G. Martinez Pérez, “Live digital, remember digital: State of
the art and research challenges,” Computers & Electrical Engineering,
vol. 40, no. 1, pp. 109-120, 2014, 40th-year commemorative issue.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0045790613002905

[71 K. A. Torkura, M. I. Sukmana, F. Cheng, and C. Meinel, “CloudStrike:
Chaos Engineering for Security and Resiliency in Cloud Infrastructure,”
IEEE Access, vol. 8, pp. 123 044-123 060, 2020.

[8] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 35-41, 2016.

[9] C. Camacho, P. C. Caiizares, L. Llana, and A. Nufez, “Chaos as a
Software Product Line—A platform for improving open hybrid-cloud
systems resiliency,” Software - Practice and Experience, no. April 2021,
pp. 1-34, 2022.

[10] J. Simonsson, L. Zhang, B. Morin, B. Baudry, and M. Monperrus,
“Observability and chaos engineering on system calls for containerized
applications in Docker,” Future Generation Computer Systems, vol.
122, pp. 117-129, 2021. [Online]. Available: https://doi.org/10.1016/j.
future.2021.04.001

[11] L. Zhang, B. Morin, P. Haller, B. Baudry, and M. Monperrus, “A Chaos
Engineering System for Live Analysis and Falsification of Exception-
Handling in the JVM,” IEEE Transactions on Software Engineering,
vol. 47, no. 11, pp. 2534-2548, 2021.

[12] A. Rinehart and K. Shortridge, “Security Chaos Engineering Gaining
Confidence in Resilience and Safety at Speed and Scale,” Tech. Rep.,
2021.

[13] K. A. Torkura, M. I. Sukmana, F. Cheng, and C. Meinel, “Security chaos
engineering for cloud services: Work in progress,” in 2019 IEEE 18th
International Symposium on Network Computing and Applications, NCA
2019. Institute of Electrical and Electronics Engineers Inc., sep 2019.

[14] K. A. Torkura, M. Sukmana, F. Cheng, and C. Meinel, “Continuous
auditing and threat detection in multi-cloud infrastructure,” Computers
and Security, vol. 102, p. 102124, 2021. [Online]. Available:
https://doi.org/10.1016/j.cose.2020.102124

[15] S. Sharieh and A. Ferworn, “Securing apis and chaos engineering,”
in 2021 IEEE Conference on Communications and Network Security
(CNS), 2021, pp. 290-294.

[16] Rapid7, “2021 cloud misconfiguration report,” 2021.

[17] 1. Martinez Martinez, A. Florian Quitidn, D. Diaz-Lépez, P. Nespoli,
and F. Gomez Marmol, “Malseirs: Forecasting malware spread based on
compartmental models in epidemiology,” Complexity, vol. 2021, 2021.

[18] P. Nespoli, D. Diaz-Lépez, and F. Gémez Méarmol, “Cyberprotection
in iot environments: A dynamic rule-based solution to defend smart
devices,” Journal of Information Security and Applications, vol. 60,
p- 102878, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2214212621001058

137

