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Abstract 

In order to understand the link between brain functional states and behavioral/cognitive processes, the information 
carried in neural oscillations can be retrieved using different analytic techniques. Processing these different bio-
signals is a complex, time-consuming, and often non-automatized process that requires customization, due to the 
type of signal acquired, acquisition method implemented, and the objectives of each individual research group. To 
this end, a new graphical user interface (GUI), named BOARD-FTD-PACC, was developed and designed to facilitate 
the visualization, quantification, and analysis of neurophysiological recordings. BOARD-FTD-PACC provides different 
and customizable tools that facilitate the task of analyzing post-synaptic activity and complex neural oscillatory data, 
mainly cross-frequency analysis. It is a flexible and user-friendly software that can be used by a wide range of users to 
extract valuable information from neurophysiological signals such as phase–amplitude coupling and relative power 
spectral density, among others. BOARD-FTD-PACC allows researchers to select, in the same open-source GUI, differ‑
ent approaches and techniques that will help promote a better understanding of synaptic and oscillatory activity in 
specific brain structures with or without stimulation.

Keywords  Cross-frequency analysis, Synaptic analysis , Event-related potentials, Phase–amplitude coupling, Phase 
coherence

1  Introduction
Starting with the first electroencephalographic (EEG) 
recordings by Hans Berger [1], brain activity, in dif-
ferent oscillation bands, has been associated with 

cognitive processes. Since then, advances in neurophysi-
ological techniques, acquisition methods, and signal 
processing (i.e., computational capability improvements) 
have yielded major insights into the function of spe-
cific brain structures and their relation with behavior 
and cognitive processes [2]. For instance, theta, alpha, 
and gamma band interactions in the neocortex and hip-
pocampus are linked with memory processes [3], while 
beta oscillations have been related to sensory-motor 
activity [4].

Interactions between brain oscillators can be estimated 
through different methods. In this sense, cross-frequency 
coupling (CFC) analysis characterizes the interaction 
between oscillations across different frequency bands; 
different types of CFC have been described, including 
phase-to-phase (PPC), amplitude-to-amplitude (AAC), 
and phase-to-amplitude (PAC). In this work, we focused 
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on two types of coupling: phase coherence (PC) [5] and 
PAC. There are different methods for measuring PAC: 
envelope-to-signal correlation [6], phase-locked meas-
urement [7], modulation index [8], general linear model 
measurement [9], the amplitude of the power spectral 
density (PSD) [10], Kullback–Leibler-based modula-
tion index [11] and event-related phase–amplitude 
coupling [12]. Each method has different advantages 
and limitations and should be chosen according to the 
data acquired and the specific experiment performed. 
In the case of PC, relations between two signals can be 
observed by their instantaneous phase difference [13]. 
These moments of coherence reveal an effective interac-
tion between different areas of the brain [14] and a flex-
ible communication structure [15]. This mechanism has 
been linked with several functions, such as memory [16] 
and attention [17].

Analysis of neurophysiological recordings may require 
different methodological approaches with diverse com-
plexity levels, ranging from amplitude and latency 
quantification in single-cell records to the analysis of 
coordinated network activity of several hundred thou-
sand active neurons (large-scale brain networks). 
Implementing advanced analytical procedures requires 
proficient management of complex mathematical meth-
ods and programming skills, which are not mastered by 
many neuroscientists or clinicians; it could therefore be 
profitable to offer them a user-friendly software applica-
tion subserving such analytical methods. Although there 
are, in fact, some available applications and tools to ana-
lyze neural signals, some of them have been designed 
for particular purposes, and, therefore, they can be not 
easily customizable, expensive, not available for the gen-
eral public or too complicated for general use. The fol-
lowing are some of the many other programs that have 
been developed for cross-frequency analysis, and which 
take different approaches. EEGlab [18] is a very complete 
and wide-ranging MATLAB toolbox oriented to scalp 
EEG signals, developed for event-related potential (ERP) 
and independent component analysis (ICA). EEGLab 
has a toolbox, event-related PACTools [19], that allows 
the use of several PAC methods. In addition to EEGLab, 
other software like Fieldtrip [20], Brainstorm [21], MNE 
[22] and Tensorpac [23], are able to estimate PC, PAC 
and other types of time–frequency analysis. However, 
some of them require advanced programming abilities, 
non-include a graphical interface, not allow automatic 
segmentation or implement only one method of PAC 
estimation. On the other hand, there are a lot of programs 
for analyzing synaptic activity such as Neuromatic [24], 
MiniAnalysis (Synaptosoft, Decatur, US), Minhee Analy-
sis Package [25], Easy Electrophysiology v2.3 (Easy Elec-
trophysiology Ltd., UK), pClamp 11 (Molecular Devices) 

and WCP Strathclyde Electrophysiology Software, which 
focus on detecting and quantifying post-synaptic events, 
action potential analysis and filtering, among many other 
functions. Few of them have tools for power spectral 
analysis such as Fast Fourier Transform (FFT) or Power 
Spectral Density (PSD), and none have specific tools for 
cross-frequency analysis.

For that reason, we developed BOARD-FTD-PACC 
(Brain Oscillations Analysis and Resourceful Display 
in Frequency and Time Domains Plus Phase Amplitude 
Coupling and Coherence) using MATLAB (The Math-
works, Inc.), integrating several analytical procedures 
in a single and adjustable interface to offer a tool for 
neurophysiological analysis of diverse intracellular and 
extracellular recordings including synaptic and large-
scale networks analysis, that is accessible, user-friendly, 
practical in diverse experimental setups, and reliable. At 
difference of most cross-frequency analyzing programs, 
BOARD-FTD-PACC may detect and analyze post-syn-
aptic events and also, includes three methods for PAC 
quantification: Mean Vector Length Modulation Index, 
Kullback–Leibler Modulation Index and Phase-Locking 
Value. In addition, the huge variability in experimental 
procedures makes it difficult to have an analysis software 
that can fit many different recording conditions such as 
electrode location and number, stimulation protocols, 
time window selection and trial averaging. The present 
software interface provides both numerical and graphi-
cal outputs from different analytical methods, allowing 
the user to display them either time- (average) or phase-
locked (cross-frequency coupling). BOARD-FTD-PACC 
is of particular use in assisting researchers in cross-fre-
quency analysis, reducing the time required to perform 
such analyses in different experimental settings. In the 
present work, we will show some examples of recordings 
derived from in vivo experiments in the thalamus, cortex, 
and hippocampus, illustrating the use of the BOARD-
FTD-PACC tool for their analysis in time-, frequency- 
and time–frequency domains.

2 � Methods
Experimental data analysis often entails finding a suita-
ble best-fit technique to extract significant information 
and present it in an intuitive and straightforward way. 
Due to the complex nature of neural signals, it has been 
necessary to pick up and customize a range of analyti-
cal techniques developed in mathematics, engineering, 
and data science over recent decades. Since there is a 
need for different tools for the visualization and analy-
sis of neural signals in a research laboratory applying 
countless experimental setups, as well as variations in 
the recording duration, stimulation, and conditions of 
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the subjects, we have selected and optimized a set of 
different analytical and visualization tools.

BOARD-FTD-PACC is a software application devel-
oped for the analysis of neural oscillations using 
MATLAB’s App Designer, a high-level computing envi-
ronment and programming language widely used in 
neuroscience. Considering that MATLAB offers sev-
eral advantages over other languages, that software was 
designed to work with linear data structures, such as the 
matrices used in this instance, and it is a higher-level 
language that provides design tools that allow apps and 
interfaces to be designed and used in a very intuitive 
way. BOARD-FTD-PACC was designed to be adapt-
able and intuitive, aimed at users with diverse computa-
tional backgrounds. It is intended as a semi-automatic 
tool, in which the users can adjust parameters such as 
time and frequency limits, or trial selection, according 
to the experimental design and analytical requirements, 
in order to obtain a more robust analysis. This software 
enables the use of different techniques to extract more 
information hidden in regional brain oscillations. Since 
the code is written exclusively in MATLAB, no external 
functions or libraries are required. The toolbox can be 
used on OS X, Linux, and Windows architectures, and 
installed as a MATLAB app. The output of this soft-
ware is mainly independent graphs that can be saved 
and manipulated individually without losing previous 
analyses. Electrical signals produced by a large group 
of neurons can be analyzed in the time and frequency 
domains.

2.1 � Time domain
In the time domain, some methods include (a) meas-
uring the amplitude and latency of neurophysiological 
activity, (b) averaging trials, used to calculate event-
related potentials (ERP), and (c) z-score visualization of 
the rectified signal. One of the first methods developed 
in the time domain was averaging, which made it pos-
sible to summarize neurophysiological recordings, even 
before digital computers were available [26], improving 
the signal-to-noise ratio [27]. Stimuli-triggered averag-
ing of electrical activity can detect time-locked event-
related responses (a time-domain graph shows how 
a signal changes within a selected period) with preci-
sion and accuracy. To characterize the relative changes 
of the mean power of the electrical activity, BOARD-
FTD-PACC calculates the root mean square (RMS) of 
the signal and normalizes it over the mean of the raw 
signal using the z-score (Fig. 1) [27]. Time-locked activ-
ity can also be filtered in a single frequency band, mak-
ing it possible to identify transient power changes and 
remove unwanted noise [28].

2.2 � Frequency domain
The Fourier transform (Ft) calculates the spectral power of 
every frequency from raw or filtered analog time series [29]. 
For discrete time series, like digitized neurophysiological 
recordings, it has been necessary to develop other meth-
ods based on Ft, like: (a) fast Fourier transform (FFT) [30], 
which analyzes discrete and limited signals; (b) Power Spec-
tral Density (PSD), a method that estimates the distribution 
of power into frequency components of a signal and corrects 
the influence of noise [31]; and (c) relative PSD [32], which 
determines the percentage of energy in a specific frequency 
band. Such analyses rely on the presumption of stationarity, 
which makes them blind to dynamic changes in the power 
spectrum [33]. Since brain activity is temporally variable, it 
does not fit the stationarity criteria, thus the above-men-
tioned methods have limited sensitivity to transient activity 
changes in neural signals.

2.3 � Time–frequency domain
Time–frequency domain-based analyses are aimed to 
detect temporal variations of spectral power in differ-
ent frequency bands to solve the limitations of pure 
frequency domain methods. A first approach was to 
iteratively calculate FFT over successively shorter time 
windows (with or without overlapping between them) 
and stack them to construct a three-dimensional dis-
play (spectrogram). However, such window size limits 
spectrogram time or frequency sensitivity and biases the 
results [34]. In 1984, Morlet and Grossman used wavelets 

Fig. 1  Algorithm flowchart for the implemented RMS z-score 
method. This method gives the neural activity relative to the mean of 
the signal, for every trial, as a positive number
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to produce a time–frequency analysis with adjustable 
time windows using the number of cycles in a wavelet 
of a particular frequency (scalogram) [35, 36]. Within 
the different types of wavelets, the Morlet method is the 
Gaussian model of a sine wave with better results in the 
context of EEG signal analysis [37]. Other methods such 
as Choi–Williams distribution (CWD), base their analy-
sis on the use of kernels, generally exponential functions 

instead of sinusoidal functions. Although it can present 
good results, it needs parameter adjustment to reduce 
artifacts, as well as to avoid aliasing. In addition, the sig-
nals analyzed by CWD must be short and it has a high 
computational cost [38]. The most flexible method that 
has a good compromise between resolution, computa-
tional cost and flexibility is the Morlet wavelet, and for 
that reason was implemented in BOARD-FTD-PACC.

Fig. 2  Algorithm flowchart for the implemented PAC (comodulogram) method. The steps for calculating this phase–amplitude plot can be 
followed for a single channel or for the interaction of two channels, by choosing the inputs as a single or two separate channels
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2.4 � Phase analysis
PAC can be used to measure modulation locally or 
between two brain regions, and different approaches can 
be used to calculate it:

1.	 Comodulogram-based modulation index [11] (Fig. 2). 
For this method, two frequency bands are selected: 
a narrow and low-frequency modulating band ( fp ), 
and a broad and high-frequency modulated band 
( fA ). For each combination of these frequency win-
dows, we determine the modulation index (MI) of 
that pair of frequencies. At the end, a comodulogram 
is plotted with the MI for each combination. The raw 
signal x(t) is filtered in two frequency ranges ( fp and 
fA ), obtaining xfp(t) and xfA(t) . The phases φfp(t) of 
xfp(t) , as well as the amplitude AfA(t) of xfA(t) , are 
calculated using the Hilbert transform. The phases 
φfp(t) are binned and a composite phase–amplitude 
time series ( φfp , AfA ) is calculated to obtain the mean 

amplitude distribution over phase bins. The MI is 
obtained by normalizing the average for every pair 
of frequency windows. These steps are repeated for 
each of the m low-frequency windows and the n fast-
frequency windows and are represented in a n by m 
comodulogram (Fig. 2).

2.	 Average high-frequency power over the modulating 
low band [39], is a variation of the previous method. 
Only one modulating band is analyzed, so the phases 
φfp(t) are calculated and binned. For the faster-mod-
ulated band, time–frequency analysis is performed 
using a Morlet wavelet transform, TFfA . We now have 
a composite phase–amplitude time series ( φfp , TFfA ) 
that allows us to obtain the mean power per phase 
bin. The average of the entire band can be calculated 
to obtain the power distribution and its mean gives a 
single value for the pair of frequency bands.

	 This method can be also used for every trial that is 
being analyzed and averaged to get a general idea of 
the recording.

3.	 Average high-frequency power over the modulat-
ing low band cycles (Fig.  3). This method is espe-
cially useful when the modulating band oscillations 
are not continuously present across the experiment. 
To analyze the modulating band, after filtering, a 
peak detection algorithm is used to determine the 
local minimum of the wave; then, a time window is 
selected for each low-frequency band cycle wd

(

j
)

 , 
and the phases φfp(t) are calculated and binned. A 
wavelet transform TFfA

(

j
)

 is calculated for each cor-
responding time window of the raw modulated band 
A phase-power time series ( φfp , TFfA ) allows us to 
obtain the mean power per phase bin. The power dis-
tribution is obtained by averaging the entire modu-
lated band power for each modulating band phase, 
giving a single amplitude value for each phase bin.

PC: For phase coherence, which can only be deter-
mined between channel pairs, the same phase approach 
is used (Fig.  4). PC displays temporal information of 
phase synchrony between separated brain areas, which 
is indirect evidence of their functional interaction [40]. 
For this analysis, several time windows are selected and, 
in every one, Morlet wavelet transform is applied to each 
channel ( W1

(

j
)

 ), then a frequency window is selected 
to obtain each channel phase ( P1

(

j
)

 and P2
(

j
)

 ) from 
the wavelet output. For every time–frequency epoch, 
the difference between the two phases was calculated 
( d = P1

(

j
)

− P2
(

j
)

 ) and used to define the phase-coher-
ence value PC

(

j, k
)

= mean(eid).

Fig. 3  Algorithm flowchart for the implemented PAC (cycle 
detection) method. This method can be used to measure the 
modulation in a single channel or for the interaction of two channels
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Fig. 4  Algorithm flowchart for the implemented PPC method. For each channel ( S1 and S2 ), m windows of time are determined, and the Morlet 
wavelet transform is calculated for each window in both channels. For each time window, n frequency windows are determined, and their 
phases are calculated. The difference between the two phases is measured for every time–frequency epoch and this is used to calculate the 
phase-coherence value, which is represented in an n by m matrix
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Representative intracranial recordings integrated with 
the flowcharts and analytic methods of figures  1-4 are 
included as Additional file 1 (Fig. S1–S4). Finally, an over-
view of the BOARD-FTD-PACC interface is presented in 
Fig. 5.

3 � Results
3.1 � Software overview
The following examples were derived from simultaneous 
in vivo recordings in the thalamus and cortex of anesthe-
tized rats.

3.1.1 � Initial setup
The aim of this work was to present a platform for the 
analysis of electrophysiological signals recorded in dif-
ferent experimental configurations that include differ-
ent setups, with anesthetized or free-moving subjects, 
in chronic or acute experimental conditions, with or 
without neural stimulation. To illustrate the differ-
ent applications, we present the images produced as 
examples that came from intracranial in  vivo record-
ings from an anesthetized rat. Users start using the 

interface by opening the file BOARD_FTD_PACC.
mlapp using MATLAB. This file opens a general win-
dow which displays the different tools and analyses 
that can be used. It is important to know the name of 
the file and the structure of the experiment since they 
are necessary when defining the parameters that allow 
the analysis to be carried out correctly. One of the 
strengths of BOARD-FTD-PACC is that it is a semi-
automatic tool, designed to be used by someone who 
knows the experiment as well as the acquisition condi-
tions. Using this interface, they can adjust the analysis 
conditions to their experiment accurately and not leave 
such decisions up to a fully automatic program. Once 
such parameters are set, the analysis will be automatic.

3.1.2 � Data preprocessing
BOARD-FTD-PACC loads digitized signals stored in 
axon binary file (.abf ) format and the European data for-
mat (.edf ). To load a file, its name must be typed in the 
File name box (Fig. 6), and then the Load button must be 
clicked (f_LoadSignal).

Fig. 5  General overview of the BOARD-FTD-PACC interface
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By clicking the Initial figure (f_Plot_Ch) button 
(Fig.  6①), a window showing the raw signal of every 
channel in the file is displayed (Fig. 6①). Then, the user 
can select the signal to be analyzed by typing its num-
ber in the Channel box. Whenever stimulation has been 
used in the experiment, the channel containing this sig-
nal must be typed in the Stim num box, and interstimu-
lus interval (in seconds) must be typed in the Inter stim 
time box. If the stimulation channel is a waveform one, 
minimal stimulation amplitude (in mV) can be typed in 
the corresponding Threshold box. Then, time window 
limits must be set by typing values in the Initial time 
(since stimulus time is set as zero, initial time can either 

be negative or positive, Fig.  6②) and Final time boxes. 
The user can now select how to display the successive 
time windows: if all trials are to be overlaid, a tick has to 
be typed in the All trials box; if selected trials are to be 
displayed, their numbers must be listed in the Selected 
trials box. If no stimulation was used in the experiment, 
the user can tick the No Stim box, and the signal will be 
displayed as it was during the experiment. Whenever 
it is necessary, the user can downsample the signal, by 
typing the desired sampling frequency in the Sample Fq 
Hz box. Once all these parameters have been chosen, 
the user saves them by pressing the button Load trials 

Fig. 6  Initial setup. This section allows the user to open the signal to be analyzed in axon binary format (.abf ) and displays an initial figure of the 
raw signal of every channel. The user can select the experiment and analysis conditions by selecting the channel, determining if the recording has 
stimulation (stim) or not and its number (Stim num), giving the separation or time between two stimuli (Inter stim time), and setting the amplitude 
(Threshold) to define trials. The user also chooses the time window (Initial and Final Time), sampling frequency (Fq) in Hertz (Hz), and trials used for 
the analysis. This section displays the raw signal ① and the trials selected by the user ② 
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(f_Select_Trials), which displays the selected time 
windows.

3.1.3 � Time
For the time domain, five analyses are available: single 
trial (f_plot_single), average (f_Average), ERP 
plot (f_Butterfly), RMS (f_RMS_zscore) and sig-
nal measures (such as slope and latency) (f_Measure_
Slope). Single-trial activity displays a figure with the 
raw signal for the selected trial in the basic information 
panel (Fig. 7①). The average shows time-locked activity 
in the recording (Fig. 7②). The ERP plot displays a figure 
with two plots: the activity from every trial overlaid in 
the same figure; as well as every trial activity in a matrix 

(m x n), where m is time, n is each trial, and the ampli-
tude is given by color (Fig. 7③). The z-score of the RMS 
presents the activity relative to the mean, representing a 
measure of the number of standard deviations that each 
point of the signal is away from the mean. The final fig-
ure gives a notion of the relative activity for every trial 
(Fig. 7④).

Measures of the slope and latency of any intervals, 
determined by the user, can be calculated in single trials 
or in averages, while the number of trials selected for the 
average is determined by the user (x), then plotted (plot) 
and finally measured (Measure). For instance, we used 
it to analyze excitatory post-synaptic potential slopes 
(EPSPs) in experiments of synaptic plasticity induction 
(long-term potentiation/LTP). Slope measures are also 
used to characterize stimuli responses and spontaneous 
activity. EPSPs are calculated using the maximum deriva-
tive value in the time window chosen by the user, and they 
have the ability to customize the initial and final point for 
the measurements, and extend this to the different trials, 
allowing the user to get a very specific response, with-
out unwanted components of the response, and without 
spending hours selecting each point individually.

3.1.4 � Frequency domain and filtering
Displaying the activity in a defined frequency band 
allows us to see how it varies over time; to this end we 
use an adjustable Butterworth bandpass filter (ISBN-10: 
0138147574). BOARD-FTD-PACC allows the user to 
choose the frequency limits for the Butterworth band-
pass filter and its order (f_Filter_order_manual).

This section calculates the frequency response to verify 
the effectiveness of the filter. It opens several windows, 
including one that displays the original signal as well as 
the filtered signal and the phase for the selected trial, and 
another that shows the envelope and phase for every trial 
(Fig. 8①).

3.1.5 � Frequency domain and power
FFT allows us to know the main frequency components 
of the recorded data so that we can explore further the 
behavior around those specific bands. Another tech-
nique that gives information about the frequency con-
tent is the power spectral density (PSD), which displays 
the distribution of power into frequency components. 
In this case, we use the Welch method. These tech-
niques give the information for the entire time win-
dow for which we do the analysis, treating the data as 
stationary, even though the brain is a highly dynamic 
system.

Fig. 7  Time domain analysis. The user can display a single trial ① the 
average ②, an ERP window ③ that consists of the butterfly plot and 
a representation of every trial, and finally the z-score of the RMS of 
every trial ④ 
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BOARD-FTD-PACC allows users to display the FFT 
(Fig.  9①) (f_FFT) and PSD (Fig.  9③) (f_PSD) of a 
single trial and also the average FFT of every selected 
trial (Fig. 9②) (f_FFT_average) as well as the aver-
age PSD (Fig. 9④) (f_PSD_Average).

It calculates the PSD and relative PSD of a band deter-
mined by the user. This step allows us to determine the 
frequency bands that are to be explored with the time–
frequency and cross-frequency coupling methods.

3.1.6 � Time–frequency domain
Wavelet analysis is one of the most powerful time–fre-
quency analyses that can be done to visualize the changes 
of spectral power over time. There are different wavelets 
that meet these requirements, but we use the Morlet 
function.

BOARD-FTD-PACC allows the user to choose the fre-
quency limits for the calculation of the time–frequency 
transform using the Morlet wavelet for a single trial 
(Fig.  10①) (f_tf), as well as the average (Fig.  10②) 
(f_tf_average). Being an adaptable software, normal-
ization (Fig.  10③) and logarithmic scale (Fig.  10④) are 
options to adjust to the variations of different recordings.

3.1.7 � Cross‑frequency coupling
There are different types of cross-frequency coupling. In 
this GUI we focused on two: phase–amplitude (PAC) and 
phase-to-phase (PPC) coupling.

The main goal of this software was to calculate the 
frequency coupling. It allows the user to choose the 
different frequency windows and limits as well as the 
modulating channel. Different types of recordings 

Fig. 8  Filter. The user can determine the limits of the bandpass Butterworth filter—the low frequency limit (Fq low) and high frequency limit (Fq 
High)—as well as the order. BOARD-FTD-PACC displays: A the frequency response of the transfer function for the implemented filter (blue) vs the 
ideal filter (red); B a figure displaying the raw signal (top), the filtered signal (middle) and phase (bottom) for a selected single trial; C the envelope 
for every trial; and D the phase for every trial
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demand different types of methods. For a single-chan-
nel approach, a first exploration can be done with a 
comodulogram (Fig.  11①) (f_PAC_sing), since this 
method works best with continuous or medium-length 
signals. For longer signals, the high-frequency power 
over the modulating low band method can be used for 
the average of various trials or to display the result for 
a single trial (Fig. 11②) (f_Phase_PAC) and the aver-
age over the entire recording (Fig.  11③) (f_Phase_
PAC_Average). For recordings where the presence 
of the modulating frequency is not constant, the aver-
age high-frequency power over the modulating low 
band cycles method is highly recommended (Fig. 11④) 
(f_Phase_PAC_Pdetect).

In order to determine the interaction between two 
areas of the brain, the PAC can be calculated using the 
average high-frequency power over the modulating low 
band cycles method (Fig.  12①) (f_Phase_PAC_Pde-
tect_inter), and the phase coherence method 
(f_Phase_coherence).

4 � Discussion
In the present work, a new tool is presented for neuro-
physiological signal processing derived from recordings 
in different setups, whose strength is its ability to adapt. 
BOARD-FTD-PACC is designed to analyze either sin-
gle-channel data (temporal, frequency anchored in time, 
frequency, and modulation) or interactions between 
two channels (coherence and modulation), but leaves 
the parameter setting to the researcher so that they can 
control the scope of the analysis, as well as including a 
rapid system for graphical representation and several 
types of analysis in the frequency and time domains. It 
was intended as a user-friendly semi-automatic tool, to 
be used by researchers with or without computer sci-
ence and mathematical backgrounds, and it enables the 
display of information extracted from different analyses 
made of neurophysiological recordings obtained through 

Fig. 9  Frequency domain. This section displays the FFT of a single trial ①, and the FFT average of all selected trials ②, as well as the PSD of the 
single trial ③, and the average PSD ④. The PSD and relative PSD of any band are calculated by the software, while the frequency limits (Fq low to 
Fq high) are determined by the user. In order to accelerate the calculations, the signal can be resampled to a desired lower sample rate (sample 
frequency (Fq) in Hertz (Hz))
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widely variable experimental designs. Several analytic 
techniques in different time and/or frequency domains 
were implemented, such as average, ERP display, z-score, 
filtering, FFT, PSD, wavelet analysis, and PPC. Such tech-
niques are suitable to be applied one or two channels at 
a time, and are easily adjustable according to the type 
of experiments performed in a neurophysiology labora-
tory. Another main feature is the control the users have 
over the analytic procedure, regarding parameter selec-
tion and choice of temporal limits, thereby allowing a full 
understanding of the results and their context.

Rhythmic variations in brain field potentials in differ-
ent frequency bands depend on multi-level and cross-
modulating interactions between local and/or distributed 

oscillators [41, 42]. Such interactions may be physiologi-
cal mechanisms for neural computations and inter-areal 
communication [43]. In fact, low-frequency rhythms 
(e.g., theta) engage larger brain areas and modulate spa-
tially localized fast (e.g., gamma) oscillations [44, 45], 
a mechanism that is relevant to encoding and retriev-
ing memory traces through theta-to-gamma cou-
pling [43, 46, 47]. We presented some examples where 
BOARD-FTD-PACC software may represent in the 
same graphical interface the relationship between oscil-
latory activity, modulation between frequency bands 
and synaptic activity across the time. In order to obtain 
high-resolution time–frequency representations of the 
neurophysiological signals, spectral analysis techniques 

Fig. 10  Time–frequency domain. This section displays time–frequency wavelet transform (scalogram) in the frequency limits (Fq low to Fq high) 
using a determined cycle number, determined by the user. It includes the time frequency (TF) of a single trial ① and the average ②. To better 
visualize the results, the user can choose the normalization (Norm) option ③ and/or a logarithmic (Log) scale ④. In order to accelerate the 
calculations, the signal can be resampled to a desired lower sample rate (sample frequency (Fq) in Hertz (Hz))
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(i.e., FFT) are usually incorporated in a fixed time win-
dow. Since frequency bands and time windows may vary 
across an experiment, the wavelet transform was imple-
mented in BOARD-FTD-PACC to determine a scalo-
gram over the spectrogram. With the Morlet method a 
window size varies according to the frequency changes, 
improving the resolution of the graphical representation 
[33]. In comparison with Wavelet transform, quadratic 
time–frequency distribution methods (i.e., Choi–Wil-
liams distribution—CWD) are constant to time and 
frequency shifts [48, 49], and therefore, it has been con-
sidered more precise for EEG-based detection [50]. 
However, myoelectric signals during dynamic activity 
are better estimated by the continuous wavelet trans-
form in comparison with the short-time Fourier trans-
form, the Wigner–Ville distribution and the CWD [51]. 
Further studies should assess those analytic methods or 
combination of methods to be implemented according to 
the circuit studied, their physiological function, specific 

oscillatory characteristics, stationary Vs nonstationary 
neural signals and the its dynamics in a specific cognitive 
performance.

As we mentioned before, some other programs like 
EEGLab [18], Extended Modulation Index toolbox [52], 
MEAnalyser [53], ERPlab [54], ERPWAVELAB [55], 
Brainstorm [21] and FieldTrip [20], as well as librar-
ies and tool boxes such as EMEGS [56] or PyEEG [57], 
have been developed for similar proposes but without 
an integrated interface for synaptic, power spectral and 
cross-frequency analysis. Other software like ERP-
wavelab [55] focuses on multichannel time–frequency 
analysis of EEG and magnetoencephalography (MEG) 
event-related activity, but its analytical range is limited 
due to its emphasis on inter-channel interactions. RIP-
PLELAB [58] was designed exclusively for the detection, 
analysis, and classification of high-frequency oscillations 
(HFO). ERPLAb [54], a tool integrated with EEGLab, was 

Fig. 11  Phase–amplitude coupling of a single channel. The user can determine the high and low-frequency bands (Fq Low and Fq High), as well 
as the frequency windows, P step for the slow modulating frequency (phase) and A step for the fast-modulated frequency (amplitude). This section 
displays the comodulogram ①, the PAC of a single channel, which can be calculated for a single trial ②, and the average PAC for every trial ③, 
using the average high-frequency power over the modulating low band method, and of the entire recording ④ using the average high-frequency 
power over the modulating low band cycles method. In order to accelerate the calculations, the signal can be resampled to a desired lower sample 
rate [sample frequency (Fq) in Hertz (Hz)]
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designed specifically to analyze ERPs, showing the activ-
ity in all the electrodes simultaneously, and making it 
possible to localize the source of every ERP component; 
it analyzes the relation between many channels instead of 
performing different analyses on each individual channel. 
MEAnalyser is a tool focus on spike train analysis with 
the advantage of include statistical and functional con-
nectivity analysis, as well as graphical user interface [53].

BOARD-FTD-PACC uses three different methods 
for PAC analysis to obtain a better numeric estimation. 
In order to discriminate spurious from authentic PAC, 
recently was developed a tool for PAC detection based on 
the measure of extended MI [52]. According to the same 
authors, that tool has some problems in the automatic 
assignment of coupling origins and also, the extended 
MI was designed only for analysis of augmentations. In 
addition, that tool is focused only in PAC detection at the 
difference of BOARD-FTD-PACC, which also includes 
PC and PSD analysis. In a recent development, a non-
parametric multitaper estimator of PAC was proposed to 
solve some pitfalls in cross-frequency statistical analysis 
[59].

When analyzing neurophysiological signals, the experi-
menter faces the option of using an interface, which 
generally makes decisions such as defining thresholds 
automatically, but analyzes the signals more easily and 
efficiently. These programs generally do not allow the 
user to define parameters that vary widely between 

different experimental designs, and which can be easily 
defined visually, such as analysis times, thresholds, selec-
tion of components within the same response, number 
of stimuli, or even the method that they want to use for 
the same type of analysis. Another option, if the experi-
menter is proficient in programming and mathematical 
analysis, is that they can develop programs that fit only 
their signals, but they must repeat this process each 
time different approaches are used. It is also very com-
mon that the experimenter does not know how to pro-
gram the methods adjusted to their experiment, which 
can push them to carry out measurements manually so 
as not to lose control of their analysis. This third option 
has a high cost in time and energy, which limits the num-
ber of analyses that can be performed, leading to loss of 
information.

Most of the available toolboxes receive data exclu-
sively in a specific format and do not adapt to differ-
ent experimental data structures, such as changes in 
stimuli number or interstimulus interval. By contrast, 
BOARD-FTD-PACC allows the study of recordings 
while taking in account such variations. It is designed 
specifically for researchers that want to implement dif-
ferent methods in a specific and unique way. Although 
published works [11, 60] using some of the meth-
ods implemented here include the code required, 
its specific implementation for a given experimental 
setup requires some degree of computational and/or 

Fig. 12  Cross-frequency coupling between two channels. This section displays the interaction between two channels. The user determines the 
sample rate (Fq Hz), the modulating channel (Ch_P) and the modulated channel (Ch_A), as well as the frequency limits (Fq low to Fq high) and 
the time window for the phase coherence analysis (Wd Time). The interface calculates the PAC using the peak selection method (Fig. 3) ①, and 
the single-phase coherence (PC) ②. In order to accelerate the calculations, the signal can be resampled to a desired lower sample rate [sample 
frequency (Fq) in Hertz (Hz)]
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mathematical expertise, which makes it extremely diffi-
cult for non-expert users to include them in their stud-
ies. The approach of BOARD-FTD-PACC is to leave the 
decisions of the analysis parameters to the researcher, 
who can introduce the specific experimental setup. For 
instance, DC levels can be removed to eliminate DC-
related errors, artifacts can be removed manually, times 
and trials to be analyzed can be selected, band filter-
ing cutoff frequencies can be manually adjusted and 
the sample rate can be varied according to analytical 
requirements. This approach is an advantage as well as 
a limitation: the user must know and understand the 
structure of the experiment or else the settings will not 
make sense and the interface will not produce adequate 
results. BOARD-FTD-PACC incorporates a wide vari-
ety of analyses, which the user must be familiar with in 
order to understand the results provided, and to deter-
mine the correct settings. We hope it will increase the 
information obtained from neural activity and encour-
age researchers of different backgrounds to test differ-
ent methods and analytical approaches that they might 
not have considered before.
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Additional file 1: Figure S1. Algorithm flowchart for the implemented 
RMS z-score method. This method gives the activity relative to the 
mean of the signal, for every trial, as a positive number. To illustrate this 
method, we used an intracranial in vivo recording of an anesthetized 
rat that is being electrically stimulated every 3 seconds. For each trial, i, 
which initiates with a stimulus, the root mean square is calculated, then 
the mean and the standard deviation are obtained in order to determine 
the z-score value. These steps are repeated for each of the n trials, and 
then represented in a 3D image. Figure S2. Algorithm flowchart for the 
implemented PACmethod. The steps for calculating this phase–amplitude 
plot can be followed for a single channel or for the interaction of two 
channels, by choosing the inputs as a single or two separate channels. In 
this case to illustrate the method, we used an artificial modulated signal 
to show a pure modulation. For every low-frequency band, i, the signal 
is filtered, and the Hilbert transform is used to determine the phase. For 
every fast-frequency window, k, the signal is filtered, and the Hilbert trans‑
form is used to determine the amplitude. A composite phase–amplitude 
time seriesis calculated to obtain the mean amplitude distribution over 
phase bins, and the MI is obtained by normalizing the average for every 
pair of frequency windows. These steps are repeated for each of the m 
low-frequency windows and the n high-frequency windows, and are rep‑
resented in an n by m comodulogram. Figure S3. Algorithm flowchart for 
the implemented PACmethod. This method can be used to measure the 
modulation in a single channel or for the interaction of two channels. The 
signals are obtained in this case from two different channelsof an intrac‑
ranial in vivo recording of an anesthetized rat. The modulating signal from 
a chosen channelis filtered in a single modulating band; a peak detection 
algorithm is used to determine the local minima and maxima in the band 
range. Local minima and maxima are used to determine the duration of 
the cycles, thus determining several time windows) for which the wavelet 
transform of the raw modulated data is calculated for the modulated 
channel. Using the Hilbert transform, the phase of the modulating cycles 
is determined to obtain the mean power in the modulated band over 
phase bins. The power is the average of the entire modulated band, and 

an average composite phase–amplitude time seriesis calculated. Figure 
S4. Algorithm flowchart for the implemented PPC method. For each 
channeland motor cortex), m windows of time are determined, and the 
Morlet wavelet transform is calculated for each window in both channels 
[ and ]. For each time window, n frequency windows are determined, and 
their phasesare calculated. The difference between the two phases [] is 
measured for every time–frequency epoch and this is used to calculate 
the phase-coherence value using the formula , which is represented in an 
n by m matrix.

Acknowledgements
We thank Tim Hiley for editing a draft of this manuscript. This work was sup‑
ported Universidad del Rosario and Universidad Nacional de Colombia.

Author contributions
CG, AM and MN contributed to the study conception and design. Material 
preparation, data collection and analysis were performed by CG, AM and MN. 
Software developing were performed by CG and MV. The first draft of the 
manuscript was written by CG, AM and MN and all authors commented on 
previous versions of the manuscript. All authors read and approved the final 
manuscript.

Funding
Open Access funding provided by Colombia Consortium. Not applicable.

Availability of data and materials
The present open-source software can be found in the Github Repository at 
https://​github.​com/​gucec​ile/​BOARD_​FTD_​PACC. This also contains the follow‑
ing files derived from in vivo hippocampus recordings for testing: 17,223,000.
abf (recording without stimulation), 17,308,005.abf (with a single stimulus 
1.5 mA) and 17,308,009.abf (with a double stimulation 1 mA, interval of 0.1 s).

Declarations

Ethics approval and consent to participate
All procedures performed on living animals were performed in conformance 
with Animal Research: Reporting In Vivo Experiments (ARRIVE) guidelines, 
following the Guide for the Care and Use of Laboratory Animals (8th edition, 
National Institutes of Health) and fulfilling the Colombian regulation (Law 
84/1989 and Resolution 8430/1993). In addition, every experimental design 
and all procedures were approved by the Universidad Nacional de Colombia 
Ethics Committee.

Competing interests
Authors declare that there is no competing of interest regarding the publica‑
tion of this article.

Received: 19 December 2022   Accepted: 1 April 2023

References
	1.	 Tudor M, Tudor L, Tudor KI (2005) Hans Berger (1873–1941)–the history of 

electroencephalography. Acta Med Croatica 59:307–313
	2.	 Churchland PS, Sejnowski TJ (2016) Blending computational and experi‑

mental neuroscience. Nat Rev Neurosci 17:667–668. https://​doi.​org/​10.​
1038/​nrn.​2016.​114

	3.	 Köster M, Martens U, Gruber T (2019) Memory entrainment by visually 
evoked theta-gamma coupling. Neuroimage 188:181–187. https://​doi.​
org/​10.​1016/j.​neuro​image.​2018.​12.​002

	4.	 Lalo E, Gilbertson T, Doyle L et al (2007) Phasic increases in cortical 
beta activity are associated with alterations in sensory processing 
in the human. Exp Brain Res 177:137–145. https://​doi.​org/​10.​1007/​
s00221-​006-​0655-8

	5.	 Osipova D, Hermes D, Jensen O (2008) Gamma power is phase-locked 
to posterior alpha activity. PLoS ONE 3:e3990. https://​doi.​org/​10.​1371/​
journ​al.​pone.​00039​90

https://doi.org/10.1186/s40708-023-00191-x
https://doi.org/10.1186/s40708-023-00191-x
https://github.com/gucecile/BOARD_FTD_PACC
https://doi.org/10.1038/nrn.2016.114
https://doi.org/10.1038/nrn.2016.114
https://doi.org/10.1016/j.neuroimage.2018.12.002
https://doi.org/10.1016/j.neuroimage.2018.12.002
https://doi.org/10.1007/s00221-006-0655-8
https://doi.org/10.1007/s00221-006-0655-8
https://doi.org/10.1371/journal.pone.0003990
https://doi.org/10.1371/journal.pone.0003990


Page 16 of 17Gauthier‑Umaña et al. Brain Informatics           (2023) 10:12 

	6.	 Bruns A, Eckhorn R (2004) Task-related coupling from high- to low-
frequency signals among visual cortical areas in human subdural 
recordings. Int J Psychophysiol 51:97–116. https://​doi.​org/​10.​1016/j.​
ijpsy​cho.​2003.​07.​001

	7.	 Vanhatalo S, Palva JM, Holmes MD et al (2004) Infraslow oscillations 
modulate excitability and interictal epileptic activity in the human 
cortex during sleep. Proc Natl Acad Sci USA 101:5053–5057. https://​
doi.​org/​10.​1073/​pnas.​03053​75101

	8.	 Canolty RT, Edwards E, Dalal SS et al (2006) High gamma power is 
phase-locked to theta oscillations in human neocortex. Science 
313:1626–1628. https://​doi.​org/​10.​1126/​scien​ce.​11281​15

	9.	 Penny WD, Duzel E, Miller KJ, Ojemann JG (2008) Testing for nested 
oscillation. J Neurosci Methods 174:50–61. https://​doi.​org/​10.​1016/j.​
jneum​eth.​2008.​06.​035

	10.	 Samaha J, Cohen MX (2022) Power spectrum slope confounds estima‑
tion of instantaneous oscillatory frequency. Neuroimage 250:118929. 
https://​doi.​org/​10.​1016/j.​neuro​image.​2022.​118929

	11.	 Tort ABL, Komorowski R, Eichenbaum H, Kopell N (2010) Measuring 
phase-amplitude coupling between neuronal oscillations of different 
frequencies. J Neurophysiol 104:1195–1210. https://​doi.​org/​10.​1152/​jn.​
00106.​2010

	12.	 Voytek B, D’Esposito M, Crone N, Knight RT (2013) A method for event-
related phase/amplitude coupling. Neuroimage 64:416–424. https://​
doi.​org/​10.​1016/j.​neuro​image.​2012.​09.​023

	13.	 Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: 
phase synchronization and large-scale integration. Nat Rev Neurosci 
2:229–239. https://​doi.​org/​10.​1038/​35067​550

	14.	 Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal 
oscillations in the human cortex. J Neurosci 25:3962–3972. https://​doi.​
org/​10.​1523/​JNEUR​OSCI.​4250-​04.​2005

	15.	 Fries P (2005) A mechanism for cognitive dynamics: neuronal communi‑
cation through neuronal coherence. Trends Cogn Sci 9:474–480. https://​
doi.​org/​10.​1016/j.​tics.​2005.​08.​011

	16.	 Siegel M, Warden MR, Miller EK (2009) Phase-dependent neuronal coding 
of objects in short-term memory. Proc Natl Acad Sci USA 106:21341–
21346. https://​doi.​org/​10.​1073/​pnas.​09081​93106

	17.	 Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, 
long-range coupling between prefrontal and visual cortex during atten‑
tion. Science 324:1207–1210. https://​doi.​org/​10.​1126/​scien​ce.​11714​02

	18.	 Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis 
of single-trial EEG dynamics including independent component analysis. 
J Neurosci Methods 134:9–21. https://​doi.​org/​10.​1016/j.​jneum​eth.​2003.​
10.​009

	19.	 Martinez-Cancino R, Delorme A, Kreutz-Delgado K, Makeig S (2020) 
Computing Phase Amplitude Coupling in EEGLAB: PACTools. In: 2020 
IEEE 20th International Conference on Bioinformatics and Bioengineering 
(BIBE). IEEE, Cincinnati, pp 387–394

	20.	 Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: Open 
source software for advanced analysis of MEG, EEG, and invasive electro‑
physiological data. Comput Intell Neurosci 2011:156869. https://​doi.​org/​
10.​1155/​2011/​156869

	21.	 Tadel F, Baillet S, Mosher JC et al (2011) Brainstorm: a user-friendly 
application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716. 
https://​doi.​org/​10.​1155/​2011/​879716

	22.	 Gramfort A, Luessi M, Larson E et al (2014) MNE software for processing 
MEG and EEG data. Neuroimage 86:446–460

	23.	 Combrisson E, Nest T, Brovelli A et al (2020) Tensorpac: an open-
source Python toolbox for tensor-based phase-amplitude coupling 
measurement in electrophysiological brain signals. PLoS Comput Biol 
16:e1008302

	24.	 Rothman JS, Silver RA (2018) NeuroMatic: an integrated open-source 
software toolkit for acquisition, analysis and simulation of electrophysi‑
ological data. Front Neuroinform 12:14

	25.	 Kim YG, Shin JJ, Kim SJ (2021) Minhee analysis package: an integrated 
software package for detection and management of spontaneous synap‑
tic events. Mol Brain 14:1–17

	26.	 Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related 
brain dynamics. Trends Cogn Sci 8:204–210. https://​doi.​org/​10.​1016/j.​tics.​
2004.​03.​008

	27.	 Väisänen O, Malmivuo J (2009) Improving the SNR of EEG generated 
by deep sources with weighted multielectrode leads. J Physiol Paris 
103:306–314. https://​doi.​org/​10.​1016/j.​jphys​paris.​2009.​07.​003

	28.	 Cong F, Ristaniemi T, Lyytinen H (2015) Advanced signal processing on 
brain event-related potentials: filtering erps in time, frequency and space 
domains sequentially and simultaneously. World Scientific, Singapore

	29.	 Oppenheim AV, Willsky AS, Nawab SH (1997) Signals and systems, 2nd 
edn. Prentice Hall, Upper Saddle River

	30.	 Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of 
complex Fourier series. Math Comp 19:297–301. https://​doi.​org/​10.​1090/​
S0025-​5718-​1965-​01785​86-1

	31.	 Sheikh SA, Majoka AZ, Rehman KU et al (2015) Nonparametric spectral 
estimation technique to estimate dominant frequency for atrial fibrilla‑
tion detection. JSIP 06:266–276. https://​doi.​org/​10.​4236/​jsip.​2015.​64025

	32.	 Wang R, Wang J, Yu H et al (2015) Power spectral density and coherence 
analysis of Alzheimer’s EEG. Cogn Neurodyn 9:291–304. https://​doi.​org/​
10.​1007/​s11571-​014-​9325-x

	33.	 Cohen MX (2014) Analyzing neural time series data: theory and practice. 
The MIT Press, Cambridge

	34.	 Akin M (2002) Comparison of wavelet transform and FFT methods in the 
analysis of EEG signals. J Med Syst 26:241–247. https://​doi.​org/​10.​1023/a:​
10150​75101​937

	35.	 Akujuobi CM (2022) Wavelets and wavelet transform systems and their 
applications: a digital signal processing approach. Springer International 
Publishing, Cham

	36.	 Mallat SG (2009) A wavelet tour of signal processing: the sparse way, 3rd 
edn. Elsevier/Academic Press, Amsterdam

	37.	 Cohen MX (2019) A better way to define and describe Morlet wavelets for 
time-frequency analysis. Neuroimage 199:81–86

	38.	 Figueiredo A, Nave M, EFDA-JET contributors (2004) Time–frequency 
analysis of nonstationary fusion plasma signals: a comparison 
between the Choi–Williams distribution and wavelets. Rev Sci Instrum 
75:4268–4270

	39.	 Belluscio MA, Mizuseki K, Schmidt R et al (2012) Cross-frequency phase-
phase coupling between theta and gamma oscillations in the hippocam‑
pus. J Neurosci 32:423–435. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​4122-​11.​
2012

	40.	 Hyafil A, Giraud A-L, Fontolan L, Gutkin B (2015) Neural cross-frequency 
coupling: connecting architectures, mechanisms, and functions. Trends 
Neurosci 38:725–740. https://​doi.​org/​10.​1016/j.​tins.​2015.​09.​001

	41.	 Le Van QM, Bragin A (2007) Analysis of dynamic brain oscillations: meth‑
odological advances. Trends Neurosci 30:365–373. https://​doi.​org/​10.​
1016/j.​tins.​2007.​05.​006

	42.	 Nokia MS, Penttonen M (2022) Rhythmic Memory Consolidation in the 
Hippocampus. Front Neural Circuits 16:885684. https://​doi.​org/​10.​3389/​
fncir.​2022.​885684

	43.	 Aru J, Aru J, Priesemann V et al (2015) Untangling cross-frequency cou‑
pling in neuroscience. Curr Opin Neurobiol 31:51–61. https://​doi.​org/​10.​
1016/j.​conb.​2014.​08.​002

	44.	 Buzsáki G, Wang X-J (2012) Mechanisms of gamma oscillations. 
Annu Rev Neurosci 35:203–225. https://​doi.​org/​10.​1146/​annur​
ev-​neuro-​062111-​150444

	45.	 Canolty RT, Knight RT (2010) The functional role of cross-frequency 
coupling. Trends Cogn Sci 14:506–515. https://​doi.​org/​10.​1016/j.​tics.​2010.​
09.​001

	46.	 Colgin LL, Moser EI (2010) Gamma oscillations in the hippocampus. Physi‑
ology (Bethesda) 25:319–329. https://​doi.​org/​10.​1152/​physi​ol.​00021.​2010

	47.	 Gauthier-Umaña C, Muñoz-Cabrera J, Valderrama M et al (2020) Acute 
effects of two different species of amyloid-β on oscillatory activity and 
synaptic plasticity in the commissural CA3-CA1 circuit of the hippocam‑
pus. Neural Plast 2020:8869526. https://​doi.​org/​10.​1155/​2020/​88695​26

	48.	 Boashash B, Azemi G, O’Toole JM (2013) Time-frequency processing of 
nonstationary signals: advanced TFD design to aid diagnosis with high‑
lights from medical applications. IEEE Signal Process Mag 30:108–119

	49.	 Boashash B, Ouelha S (2016) Automatic signal abnormality detection 
using time-frequency features and machine learning: a newborn EEG 
seizure case study. Knowl-Based Syst 106:38–50

	50.	 Alazrai R, Al-Rawi S, Alwanni H, Daoud MI (2019) Tonic cold pain detection 
using Choi–Williams time-frequency distribution analysis of EEG signals: a 
feasibility study. Appl Sci 9:3433

https://doi.org/10.1016/j.ijpsycho.2003.07.001
https://doi.org/10.1016/j.ijpsycho.2003.07.001
https://doi.org/10.1073/pnas.0305375101
https://doi.org/10.1073/pnas.0305375101
https://doi.org/10.1126/science.1128115
https://doi.org/10.1016/j.jneumeth.2008.06.035
https://doi.org/10.1016/j.jneumeth.2008.06.035
https://doi.org/10.1016/j.neuroimage.2022.118929
https://doi.org/10.1152/jn.00106.2010
https://doi.org/10.1152/jn.00106.2010
https://doi.org/10.1016/j.neuroimage.2012.09.023
https://doi.org/10.1016/j.neuroimage.2012.09.023
https://doi.org/10.1038/35067550
https://doi.org/10.1523/JNEUROSCI.4250-04.2005
https://doi.org/10.1523/JNEUROSCI.4250-04.2005
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1073/pnas.0908193106
https://doi.org/10.1126/science.1171402
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/879716
https://doi.org/10.1016/j.tics.2004.03.008
https://doi.org/10.1016/j.tics.2004.03.008
https://doi.org/10.1016/j.jphysparis.2009.07.003
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.4236/jsip.2015.64025
https://doi.org/10.1007/s11571-014-9325-x
https://doi.org/10.1007/s11571-014-9325-x
https://doi.org/10.1023/a:1015075101937
https://doi.org/10.1023/a:1015075101937
https://doi.org/10.1523/JNEUROSCI.4122-11.2012
https://doi.org/10.1523/JNEUROSCI.4122-11.2012
https://doi.org/10.1016/j.tins.2015.09.001
https://doi.org/10.1016/j.tins.2007.05.006
https://doi.org/10.1016/j.tins.2007.05.006
https://doi.org/10.3389/fncir.2022.885684
https://doi.org/10.3389/fncir.2022.885684
https://doi.org/10.1016/j.conb.2014.08.002
https://doi.org/10.1016/j.conb.2014.08.002
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1016/j.tics.2010.09.001
https://doi.org/10.1016/j.tics.2010.09.001
https://doi.org/10.1152/physiol.00021.2010
https://doi.org/10.1155/2020/8869526


Page 17 of 17Gauthier‑Umaña et al. Brain Informatics           (2023) 10:12 	

	51.	 Karlsson S, Yu J, Akay M (2000) Time-frequency analysis of myoelectric 
signals during dynamic contractions: a comparative study. IEEE Trans 
Biomed Eng 47:228–238

	52.	 Jurkiewicz GJ, Hunt MJ, Żygierewicz J (2021) Addressing pitfalls in 
phase-amplitude coupling analysis with an extended modulation 
index toolbox. Neuroinformatics 19:319–345. https://​doi.​org/​10.​1007/​
s12021-​020-​09487-3

	53.	 Dastgheyb RM, Yoo S-W, Haughey NJ (2020) MEAnalyzer—a spike train 
analysis tool for multi electrode arrays. Neuroinformatics 18:163–179. 
https://​doi.​org/​10.​1007/​s12021-​019-​09431-0

	54.	 Lopez-Calderon J, Luck SJ (2014) ERPLAB: an open-source toolbox for the 
analysis of event-related potentials. Front Hum Neurosci 8:213. https://​
doi.​org/​10.​3389/​fnhum.​2014.​00213

	55.	 Mørup M, Hansen LK, Arnfred SM (2007) ERPWAVELAB a toolbox for 
multi-channel analysis of time-frequency transformed event related 
potentials. J Neurosci Methods 161:361–368. https://​doi.​org/​10.​1016/j.​
jneum​eth.​2006.​11.​008

	56.	 Peyk P, De Cesarei A, Junghöfer M (2011) ElectroMagnetoEncephalogra‑
phy software: overview and integration with other EEG/MEG toolboxes. 
Comput Intell Neurosci 2011:861705. https://​doi.​org/​10.​1155/​2011/​
861705

	57.	 Bao FS, Liu X, Zhang C (2011) PyEEG: an open source Python module 
for EEG/MEG feature extraction. Comput Intell Neurosci 2011:406391. 
https://​doi.​org/​10.​1155/​2011/​406391

	58.	 Navarrete M, Alvarado-Rojas C, Le Quyen Van M, Valderrama M (2016) 
RIPPLELAB: a comprehensive application for the detection, analysis and 
classification of high frequency oscillations in electroencephalographic 
signals. PLoS ONE 11:e0158276. https://​doi.​org/​10.​1371/​journ​al.​pone.​
01582​76

	59.	 Lepage KQ, Fleming CN, Witcher M, Vijayan S (2021) Multitaper estimates 
of phase-amplitude coupling. J Neural Eng. https://​doi.​org/​10.​1088/​1741-​
2552/​ac1deb

	60.	 Hülsemann MJ, Naumann E, Rasch B (2019) Quantification of phase-
amplitude coupling in neuronal oscillations: comparison of phase-lock‑
ing value, mean vector length, modulation index, and generalized-linear-
modeling-cross-frequency-coupling. Front Neurosci 13:573. https://​doi.​
org/​10.​3389/​fnins.​2019.​00573

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1007/s12021-020-09487-3
https://doi.org/10.1007/s12021-020-09487-3
https://doi.org/10.1007/s12021-019-09431-0
https://doi.org/10.3389/fnhum.2014.00213
https://doi.org/10.3389/fnhum.2014.00213
https://doi.org/10.1016/j.jneumeth.2006.11.008
https://doi.org/10.1016/j.jneumeth.2006.11.008
https://doi.org/10.1155/2011/861705
https://doi.org/10.1155/2011/861705
https://doi.org/10.1155/2011/406391
https://doi.org/10.1371/journal.pone.0158276
https://doi.org/10.1371/journal.pone.0158276
https://doi.org/10.1088/1741-2552/ac1deb
https://doi.org/10.1088/1741-2552/ac1deb
https://doi.org/10.3389/fnins.2019.00573
https://doi.org/10.3389/fnins.2019.00573

	BOARD-FTD-PACC: a graphical user interface for the synaptic and cross-frequency analysis derived from neural signals
	Abstract 
	1 Introduction
	2 Methods
	2.1 Time domain
	2.2 Frequency domain
	2.3 Time–frequency domain
	2.4 Phase analysis

	3 Results
	3.1 Software overview
	3.1.1 Initial setup
	3.1.2 Data preprocessing
	3.1.3 Time
	3.1.4 Frequency domain and filtering
	3.1.5 Frequency domain and power
	3.1.6 Time–frequency domain
	3.1.7 Cross-frequency coupling


	4 Discussion
	Anchor 19
	Acknowledgements
	References


