Why are some dimensions integral? Testing two hypotheses through causal learning experiments

Fabián A. Soto, Gonzalo R. Quintana, Andrés M. Pérez-Acosta, Fernando P. Ponce, Edgar H. Vogel

Resultado de la investigación: Contribución a RevistaArtículo

6 Citas (Scopus)

Resumen

© 2015 Elsevier B.V.Compound generalization and dimensional generalization are traditionally studied independently by different groups of researchers, who have proposed separate theories to explain results from each area. A recent extension of Shepard's rational theory of dimensional generalization allows an explanation of data from both areas within a single framework. However, the conceptualization of dimensional integrality in this theory (the direction hypothesis) is different from that favored by Shepard in his original theory (the correlation hypothesis). Here, we report two experiments that test differential predictions of these two notions of integrality. Each experiment takes a design from compound generalization and translates it into a design for dimensional generalization by replacing discrete stimulus components with dimensional values. Experiment 1 showed that an effect analogous to summation is found in dimensional generalization with separable dimensions, but the opposite effect is found with integral dimensions. Experiment 2 showed that the analogue of a biconditional discrimination is solved faster when stimuli vary in integral dimensions than when stimuli vary in separable dimensions. These results, which are analogous to more "non-linear" processing with integral than with separable dimensions, were predicted by the direction hypothesis, but not by the correlation hypothesis. This confirms the assumptions of the unified rational theory of stimulus generalization and reveals interesting links between compound and dimensional generalization phenomena.
Idioma originalEnglish (US)
Páginas (desde-hasta)163-177
Número de páginas15
PublicaciónCognition
DOI
EstadoPublished - oct 1 2015

Huella dactilar

Learning
stimulus
experiment
learning
Stimulus Generalization
discrimination
Generalization (Psychology)
Causal Learning
Testing
Experiment
Research Personnel
Values
Group
Stimulus
Direction compound

Citar esto

Soto, Fabián A. ; Quintana, Gonzalo R. ; Pérez-Acosta, Andrés M. ; Ponce, Fernando P. ; Vogel, Edgar H. / Why are some dimensions integral? Testing two hypotheses through causal learning experiments. En: Cognition. 2015 ; pp. 163-177.
@article{a22c81d6d64949a097704a91f9faae93,
title = "Why are some dimensions integral? Testing two hypotheses through causal learning experiments",
abstract = "{\circledC} 2015 Elsevier B.V.Compound generalization and dimensional generalization are traditionally studied independently by different groups of researchers, who have proposed separate theories to explain results from each area. A recent extension of Shepard's rational theory of dimensional generalization allows an explanation of data from both areas within a single framework. However, the conceptualization of dimensional integrality in this theory (the direction hypothesis) is different from that favored by Shepard in his original theory (the correlation hypothesis). Here, we report two experiments that test differential predictions of these two notions of integrality. Each experiment takes a design from compound generalization and translates it into a design for dimensional generalization by replacing discrete stimulus components with dimensional values. Experiment 1 showed that an effect analogous to summation is found in dimensional generalization with separable dimensions, but the opposite effect is found with integral dimensions. Experiment 2 showed that the analogue of a biconditional discrimination is solved faster when stimuli vary in integral dimensions than when stimuli vary in separable dimensions. These results, which are analogous to more {"}non-linear{"} processing with integral than with separable dimensions, were predicted by the direction hypothesis, but not by the correlation hypothesis. This confirms the assumptions of the unified rational theory of stimulus generalization and reveals interesting links between compound and dimensional generalization phenomena.",
author = "Soto, {Fabi{\'a}n A.} and Quintana, {Gonzalo R.} and P{\'e}rez-Acosta, {Andr{\'e}s M.} and Ponce, {Fernando P.} and Vogel, {Edgar H.}",
year = "2015",
month = "10",
day = "1",
doi = "10.1016/j.cognition.2015.07.001",
language = "English (US)",
pages = "163--177",
journal = "Cognition",
issn = "0010-0277",
publisher = "Elsevier",

}

Why are some dimensions integral? Testing two hypotheses through causal learning experiments. / Soto, Fabián A.; Quintana, Gonzalo R.; Pérez-Acosta, Andrés M.; Ponce, Fernando P.; Vogel, Edgar H.

En: Cognition, 01.10.2015, p. 163-177.

Resultado de la investigación: Contribución a RevistaArtículo

TY - JOUR

T1 - Why are some dimensions integral? Testing two hypotheses through causal learning experiments

AU - Soto, Fabián A.

AU - Quintana, Gonzalo R.

AU - Pérez-Acosta, Andrés M.

AU - Ponce, Fernando P.

AU - Vogel, Edgar H.

PY - 2015/10/1

Y1 - 2015/10/1

N2 - © 2015 Elsevier B.V.Compound generalization and dimensional generalization are traditionally studied independently by different groups of researchers, who have proposed separate theories to explain results from each area. A recent extension of Shepard's rational theory of dimensional generalization allows an explanation of data from both areas within a single framework. However, the conceptualization of dimensional integrality in this theory (the direction hypothesis) is different from that favored by Shepard in his original theory (the correlation hypothesis). Here, we report two experiments that test differential predictions of these two notions of integrality. Each experiment takes a design from compound generalization and translates it into a design for dimensional generalization by replacing discrete stimulus components with dimensional values. Experiment 1 showed that an effect analogous to summation is found in dimensional generalization with separable dimensions, but the opposite effect is found with integral dimensions. Experiment 2 showed that the analogue of a biconditional discrimination is solved faster when stimuli vary in integral dimensions than when stimuli vary in separable dimensions. These results, which are analogous to more "non-linear" processing with integral than with separable dimensions, were predicted by the direction hypothesis, but not by the correlation hypothesis. This confirms the assumptions of the unified rational theory of stimulus generalization and reveals interesting links between compound and dimensional generalization phenomena.

AB - © 2015 Elsevier B.V.Compound generalization and dimensional generalization are traditionally studied independently by different groups of researchers, who have proposed separate theories to explain results from each area. A recent extension of Shepard's rational theory of dimensional generalization allows an explanation of data from both areas within a single framework. However, the conceptualization of dimensional integrality in this theory (the direction hypothesis) is different from that favored by Shepard in his original theory (the correlation hypothesis). Here, we report two experiments that test differential predictions of these two notions of integrality. Each experiment takes a design from compound generalization and translates it into a design for dimensional generalization by replacing discrete stimulus components with dimensional values. Experiment 1 showed that an effect analogous to summation is found in dimensional generalization with separable dimensions, but the opposite effect is found with integral dimensions. Experiment 2 showed that the analogue of a biconditional discrimination is solved faster when stimuli vary in integral dimensions than when stimuli vary in separable dimensions. These results, which are analogous to more "non-linear" processing with integral than with separable dimensions, were predicted by the direction hypothesis, but not by the correlation hypothesis. This confirms the assumptions of the unified rational theory of stimulus generalization and reveals interesting links between compound and dimensional generalization phenomena.

U2 - 10.1016/j.cognition.2015.07.001

DO - 10.1016/j.cognition.2015.07.001

M3 - Article

SP - 163

EP - 177

JO - Cognition

JF - Cognition

SN - 0010-0277

ER -