Tuberculosis Drug Discovery Estimation Process by Using Machine and Deep Learning Models

Michael S.Ramirez Campos, Diana C. Rodríguez, Alvaro D. Orjuela-Cañón

Producción científica: Capítulo en Libro/ReporteContribución a la conferencia

Resumen

Tuberculosis is a contagious disease considered as world emergency by the World Health Organization. One of the common prevalent problems are associated to drug-resistant TB, because of unsuccessful treatments of using antibiotics. The use of artificial intelligence algorithms, mainly machine learning (ML) models have allowed to provided more tools for the drug discovery field. For this study, the methodology used was driven to identify new components that may contribute to the inhibition of the inhA protein. Leveraging ML models that learn from data, six regression models were implemented. Best model obtained R2 value of 0.99 and a MSE value of 1.8 e-5.

Idioma originalInglés estadounidense
Título de la publicación alojadaApplications of Computational Intelligence - 6th IEEE Colombian Conference, ColCACI 2023, Revised Selected Papers
EditoresAlvaro David Orjuela-Cañón, Jesus A Lopez, Julián David Arias-Londoño
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas43-53
Número de páginas11
ISBN (versión impresa)9783031484148
DOI
EstadoPublicada - 2024
Evento6th IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2023 - Bogota, Colombia
Duración: jul. 26 2023jul. 28 2023

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1865 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia6th IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2023
País/TerritorioColombia
CiudadBogota
Período7/26/237/28/23

Áreas temáticas de ASJC Scopus

  • Ciencia de la Computación General
  • Matemáticas General

Huella

Profundice en los temas de investigación de 'Tuberculosis Drug Discovery Estimation Process by Using Machine and Deep Learning Models'. En conjunto forman una huella única.

Citar esto