Training Deep Convolutional Neural Networks with Active Learning for Exudate Classification in Eye Fundus Images

Sebastian Otálora, Oscar Perdomo, Fabio González, Henning Müller

Resultado de la investigación: Capítulo en Libro/Reporte/ConferenciaContribución a la conferencia

18 Citas (Scopus)

Resumen

Training deep convolutional neural network for classification in medical tasks is often difficult due to the lack of annotated data samples. Deep convolutional networks (CNN) has been successfully used as an automatic detection tool to support the grading of diabetic retinopathy and macular edema. Nevertheless, the manual annotation of exudates in eye fundus images used to classify the grade of the DR is very time consuming and repetitive for clinical personnel. Active learning algorithms seek to reduce the labeling effort in training machine learning models. This work presents a label-efficient CNN model using the expected gradient length, an active learning algorithm to select the most informative patches and images, converging earlier and to a better local optimum than the usual SGD (Stochastic Gradient Descent) strategy. Our method also generates useful masks for prediction and segments regions of interest.

Idioma originalInglés estadounidense
Título de la publicación alojadaIntravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis - 6th Joint International Workshops, CVII-STENT 2017 and 2nd International Workshop, LABELS 2017 Held in Conjunction with MICCAI 2017, Proceedings
EditoresTal Arbel, M. Jorge Cardoso
EditorialSpringer
Páginas146-154
Número de páginas9
ISBN (versión impresa)9783319675336
DOI
EstadoPublicada - 2017
Publicado de forma externa
Evento6th Joint International Workshops on Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2017 and 2nd International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2017 held in Conjunction with 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017 - Quebec City, Canadá
Duración: sep 10 2017sep 14 2017

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10552 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia6th Joint International Workshops on Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2017 and 2nd International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2017 held in Conjunction with 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017
PaísCanadá
CiudadQuebec City
Período9/10/179/14/17

All Science Journal Classification (ASJC) codes

  • Ciencia computacional teórica
  • Informática (todo)

Huella Profundice en los temas de investigación de 'Training Deep Convolutional Neural Networks with Active Learning for Exudate Classification in Eye Fundus Images'. En conjunto forman una huella única.

Citar esto