Temperature and Relative Humidity Prediction in Swine Livestock Buildings

Andres Molano-Jimenez, Alvaro D. Orjuela-Canon, Wilmer Acosta-Burbano

Producción científica: Capítulo en Libro/ReporteContribución a la conferencia

2 Citas (Scopus)

Resumen

Based on available data from a swine livestock warehouse located in Puerto Gaitan - Meta, four models were proposed to predict relative humidity and temperature using artificial neural networks and measurements from temperature, humidity and CO2 concentration. Results seem to indicate that the model structures used are suitable for predict humidity in barns not equipped with humidity sensors and improve current installed microclimate control systems in Colombia.

Idioma originalInglés estadounidense
Título de la publicación alojada2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781538646250
DOI
EstadoPublicada - ene. 23 2019
Publicado de forma externa
Evento2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018 - Gudalajara, México
Duración: nov. 6 2018nov. 9 2018

Serie de la publicación

Nombre2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018

Conferencia

Conferencia2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018
País/TerritorioMéxico
CiudadGudalajara
Período11/6/1811/9/18

Áreas temáticas de ASJC Scopus

  • Inteligencia artificial
  • Redes de ordenadores y comunicaciones
  • Gestión y sistemas de información

Huella

Profundice en los temas de investigación de 'Temperature and Relative Humidity Prediction in Swine Livestock Buildings'. En conjunto forman una huella única.

Citar esto