Self-organizing maps for motor tasks recognition from electrical brain signals

Alvaro D. Orjuela-Cañón, Osvaldo Renteria-Meza, Luis G. Hernández, Andrés F. Ruíz-Olaya, Alexander Cerquera, Javier M. Antelis

Producción científica: Capítulo en Libro/ReporteContribución a la conferencia

3 Citas (Scopus)


Recently, there has been a relevant progress and interest for brain–computer interface (BCI) technology as a potential channel of communication and control for the motor disabled, including post-stroke and spinal cord injury patients. Different mental tasks, including motor imagery, generate changes in the electro-physiological signals of the brain, which could be registered in a non-invasive way using electroencephalography (EEG). The success of the mental motor imagery classification depends on the choice of features used to characterize the raw EEG signals, and of the adequate classifier. As a novel alternative to recognize motor imagery tasks for EEG-based BCI, this work proposes the use of self-organized maps (SOM) for the classification stage. To do so, it was carried out an experiment aiming to predict three-class motor tasks (rest versus left motor imagery versus right motor imagery) utilizing spectral power-based features of recorded EEG signals. Three different pattern recognition algorithms were applied, supervised SOM, SOM+k-means and k-means, to classify the data offline. Best results were obtained with the SOM trained in a supervised way, where the mean of the performance was 77% with a maximum of 85% for all classes. Results indicate potential application for the development of BCIs systems.

Idioma originalInglés estadounidense
Título de la publicación alojadaProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 22nd Iberoamerican Congress, CIARP 2017, Proceedings
EditoresSergio Velastin, Marcelo Mendoza
Número de páginas8
ISBN (versión impresa)9783319751924
EstadoPublicada - 2018
Publicado de forma externa
Evento22nd Iberoamerican Congress on Pattern Recognition, CIARP 2017 - Valparaiso, Chile
Duración: nov. 7 2017nov. 10 2017

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10657 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349


Conferencia22nd Iberoamerican Congress on Pattern Recognition, CIARP 2017

Áreas temáticas de ASJC Scopus

  • Ciencia computacional teórica
  • Ciencia de la Computación General


Profundice en los temas de investigación de 'Self-organizing maps for motor tasks recognition from electrical brain signals'. En conjunto forman una huella única.

Citar esto