Resumen
Idioma original | Inglés estadounidense |
---|---|
Páginas (desde-hasta) | 739-748 |
Número de páginas | 10 |
Publicación | Proceedings of the Royal Society B: Biological Sciences |
Volumen | 279 |
N.º | 1729 |
DOI | |
Estado | Publicada - 2012 |
Huella
Profundice en los temas de investigación de 'Repeated modification of early limb morphogenesis programmes underlies the convergence of relative limb length in Anolis lizards'. En conjunto forman una huella única.Citar esto
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
En: Proceedings of the Royal Society B: Biological Sciences, Vol. 279, N.º 1729, 2012, p. 739-748.
Producción científica: Contribución a una revista › Artículo de Investigación › revisión exhaustiva
TY - JOUR
T1 - Repeated modification of early limb morphogenesis programmes underlies the convergence of relative limb length in Anolis lizards
AU - Sanger, T.J.
AU - Revell, L.J.
AU - Gibson-Brown, J.J.
AU - Losos, J.B.
N1 - Cited By :27 Export Date: 17 April 2018 CODEN: PRLBA Correspondence Address: Sanger, T. J.; Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States; email: [email protected] References: Bateson, W., (1909) Mendel's Principles of Heredity, , Cambridge, UK: Cambridge University Press; Goldschmidt, R., (1940) The Material Basis of Evolution, , New Haven, CT: Yale University Press; Huxley, J., (1942) Evolution: The Modern Synthesis, , Cambridge, MA: MIT Press; Arthur, W., (2004) Biased Embryos and Evolution, , Cambridge, UK: Cambridge University Press; Amundson, R., (2005) The Changing Role of the Embryo In Evolutionary Thought, , Cambridge, UK: Cambridge University Press; Simpson, G.G., (1944) Tempo and Mode In Evolution, , New York, NY: Columbia University Press; Maynard-Smith, J.R., Burian, R., Kaufffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Wolpert, L., Developmental constraints and evolution (1985) Q. Rev. Biol, 60, pp. 265-287. , (doi:10.1086/414425); Losos, J.B., Convergence, adaptation, and constraint (2011) Evolution, 65, pp. 1827-1840. , (doi:10.1111/j.1558-5646.2011.01289.x); Wake, D.B., Wake, M.H., Specht, C.D., Homoplasy: From detecting pattern to determining process and mechanism of evolution (2011) Science, 331, pp. 1032-1035. , (doi:10.1126/science.1188545); Wake, D.B., Homoplasy: The result of natural selection, or evidence of design limitations (1991) Am. Nat, 138, pp. 543-567. , (doi:10.1086/285234); Gould, S.J., (2002) The Structure of Evolutionary Theory, , Cambridge, MA: Harvard University Press; Schluter, D., Clifford, E.A., Nemethy, M., McKinnon, J.S., Parallel evolution and inheritance of quantitative traits (2004) Am. Nat, 163, pp. 809-822. , (doi:10.1086/383621); Whittall, J.B., Voelckel, C., Hodges, S.A., Convergence, constraint and the role of gene expression during adaptive radiation: Floral anthocyanins in Aquilegia (2006) Mol. Ecol, 15, pp. 4645-4657. , doi:10.1111/j.1365-294X.2006.03114.x); Atallah, J., Liu, N.H., Dennis, P., Hon, A., Larsen, E.W., Developmental constraints and convergent evolution in Drosophila sex comb formation (2009) Evol. Dev, 11, pp. 205-218. , (doi:10.1111/j.1525-142X.2009.00320.x); des Marais, D.L., Rausher, M.D., Parallel evolution at multiple levels in the origin of hummingbird pollinated flowers in Ipomoea (2010) Evolution, 64, pp. 2044-2054; Hamburger, V., Embryology and the modern synthesis in evolutionary theory (1980) The Evolutionary Synthesis, pp. 97-112. , (eds E. Mayr & W. B. Provine, Cambridge, MA: Harvard University Press; Gould, S.J., (1977) Ontogeny and Phylogeny, , Cambridge, MA: Harvard University Press; Duboule, D., Dolle, P., The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes (1989) EMBO J, 8, pp. 1497-1505; Shapiro, M.D., Marks, M.E., Peichel, C.L., Blackman, B.K., Nereng, K.S., Jonsson, B., Schluter, D., Kingsley, D.M., Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks (2004) Nature, 428, pp. 717-723. , (doi:10.1038/nature02415); Colosimo, P.F., Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles (2005) Science, 307, pp. 1928-1933. , (doi:10.1126/science.1107239); Prud'homme, B., Gompel, N., Rokas, A., Kassner, V.A., Williams, T.M., Yeh, S., True, J.R., Carroll, S.B., Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene (2006) Nature, 440, pp. 1050-1053. , (doi:10.1038/nature04597); Derome, N., Duchesne, P., Bernatchez, L., Parallelism in gene transcription among sympatric lake whitefish (Coregonus clupeaformis Mitchill) ecotypes (2006) Mol. Ecol, 15, pp. 1239-1249. , (doi:10.1111/j.1365-294X.2005.02968.x); Arendt, J., Reznick, D., Convergence and parallelism reconsidered: What have we learned about the genetics of adaptation? (2008) Trends Ecol. Evol, 23, pp. 26-32. , (doi:10.1016/j.tree.2007.09.011); Manceau, M., Domingues, V.S., Linnen, C.R., Rosenblum, E.B., Hoekstra, H.E., Convergence in pigmentation at multiple levels: Mutations, genes and function (2010) Phil. Trans. R. Soc. B, 1552, pp. 2439-2450. , (doi:10.1098/rstb.2010.0104); Elmer, K.R., Meyer, A., Adaptation in the age of ecological genomics: Insights from parallelism and convergence (2011) Trends Ecol. Evol, 26, pp. 298-306. , (doi:10.1016/j.tree.2011.02.008); Cooper, W.J., Albertson, R.C., Quantification and variation in experimental studies of morphogenesis (2008) Dev. Biol, 321, pp. 295-302. , (doi:10.1016/j.ydbio.2008.06.025); Klingenberg, C.P., Evolution and development of shape: Integrating quantitative approaches (2010) Nat. Rev. Genet, 11, pp. 623-635; Grant, P.R., (1999) Ecology and Evolution of Darwin's Finches, , Princeton, NJ: Princeton University Press; Schluter, D., (2000) The Ecology of Adaptive Radiation, , Oxford, UK: Oxford University Press; Losos, J.B., (2009) Lizards In An Evolutionary Tree: Ecology and Adaptive Radiation of Anoles, , Berkeley, CA: University of California Press; Cohn, M.J., Tickle, C., Developmental basis of limblessness and axial patterning in snakes (1999) Nature, 399, pp. 474-479. , (doi:10.1038/20944); Abzhanov, A., Kuo, W.P., Hartmann, C., Grant, B.R., Grant, P.R., Tabin, C.J., The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches (2006) Nature, 442, pp. 563-567. , (doi:10.1038/nature04843); Abzhanov, A., Protas, M., Grant, B.R., Grant, P.R., Tabin, C.J., Bmp4 and morphological variation of beaks in Darwin's finches (2004) Science, 305, pp. 1462-1465. , (doi:10.1126/science.1098095); Farnum, C.E., Tinsley, M., Hermanson, J.W., Postnatal bone elongation of the manus versus pes: Analysis of the chondrocytic differentiation cascade in Mus musculus and Eptesicus fuscus (2008) Cells Tissues Organs, 187, pp. 48-58. , (doi:10.1159/000109963); Farnum, C.E., Tinsley, M., Hermanson, W., Forelimb versus hindlimb skeletal development in the big brown bat, Eptesicus fuscus: Functional divergence is reflected in chondrocytic performance in autopodial growth plates (2008) Cells Tissues Organs, 187, pp. 35-47. , (doi:10.1159/000109962); Adams, D.C., Nistri, A., Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae) (2010) BMC Evol. Biol, 10, p. 216. , (doi:10.1186/1471-2148-10-216); Sanger, T.J., Norgard, E.Z., Pletscher, L.S., Bevilacqua, M., Brooks, V.R., Sandell, L.B., Cheverud, J.M., Developmental and genetic origins of murine long bone length variation (2010) J. Exp. Biol, 314 B, pp. 1-16; Alberch, P., Gould, S.J., Oster, G.F., Wake, D.B., Size and shape in ontogeny and phylogeny (1979) Paleobiology, 5, pp. 296-317; Klingenberg, C.P., Heterochrony and allometry: The analysis of evolutionary change in ontogeny (1998) Biol. Rev, 73, pp. 79-123. , (doi:10.1017/S000632319800512X); Sears, K.E., Behringer, R.R., Rasweiler, J.J., Niswander, L.A., The development of bat flight: Morphologic and molecular evolution of bat forelimb digits (2006) Proc. Natl Acad. Sci. USA, 103, pp. 6581-6586. , (doi:10.1073/pnas.0509716103); Rolian, C., Developmental basis of limb length in rodents: Evidence for multiple divisions of labor in mechanisms of endochondral bone growth (2008) Evol. Dev, 10, pp. 15-28. , (doi:10.1111/j.1525-142X.2008.00211.x); Ray, R., Capecchi, M.R., An examination of the chiropteran HoxD locus from an evolutionary perspective (2008) Evol. Dev, 10, pp. 657-670. , (doi:10.1111/j.1525-142X.2008.00279.x); Hockman, D., Mason, M.K., Jacobs, D.S., Illing, N., The role of early development in mammalian limb diversification: A descriptive comparison of early limb development between the natal long-fingered bat (Miniopterus natalensis) and the mouse (Mus musculus) (2009) Dev. Dynam, 238, pp. 965-979. , (doi:10.1002/dvdy.21896); Hall, B.K., Unlocking the black box between genotype and phenotype: Cell condensations as morphogenetic (modular) units (2003) Biol. Philos, 18, pp. 219-247. , (doi:10.1023/A:1023984018531); Sanger, T.J., Losos, J.B., Gibson-Brown, J.J., A developmental staging series for the lizard genus Anolis: A new system for the integration of evolution, development, and ecology (2008) J. Morph, 269, pp. 129-137. , (doi:10.1002/jmor.10563); Sanger, T.J., Hime, P.M., Johnson, M.A., Diani, J., Protocols for husbandry and embryo collection of Anolis lizards (2008) Herpetol. Rev, 39, pp. 58-63; Beuttell, K., Losos, J.B., Ecological morphology of Caribbean anoles (1999) Herpetol. Monogr, 13, pp. 1-28. , (doi:10.2307/1467059); Calsbeek, R., Smith, T.B., Probing the adaptive landscape using experimental islands: Density-dependent natural selection on lizard body size (2007) Evolution, 61-65, pp. 1052-1061. , (doi:10.1111/j.1558-5646.2007.00093.x); Hanken, J., Wassersug, R., The visible skeleton: A new double-stain technique reveals the nature of the 'hard' tissues (1981) Funct. Photogr, 16, pp. 22-26; Taylor, W.R., Dyke, G.C.V., Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study (1985) Cybium, 9, pp. 107-119; Walker, M.B., Kimmel, C.B., A two-color acid-free cartilage and bone stain for zebrafish larvae (2007) Biotechnic. Histochem, 82, pp. 23-28. , (doi:10.1080/10520290701333558); Rasband, W.S., (1997) Bethesda, MD: US National Institutes of Health; Abramoff, M.D., Magelhaes, P.J., Ram, S.J., (2004) Image Processing With Image J. Biophotonics Int, 11, pp. 36-42; Huxley, J.S., (1932) Problems of Relative Growth, , London, UK: Methuen; Sokal, R.R., Rohlf, F.J., (1995) Biometry, , 3rd edn. New York, NY: Freeman and Company; Garland, T., Dickerman, A.W., Janis, C.M., Jones, J.A., Phylogenetic analysis of covariance by computer simulation (1993) Syst. Biol, 42, pp. 265-292; Felsenstein, J., Phylogenies and the comparative method (1985) Am. Nat, 125, pp. 1-15. , (doi:10.1086/284325); Harvey, P.H., Pagel, M.D., (1991) The Comparative Method In Evolutionary Biology, , Oxford, UK: Oxford University Press; Revell, L.J., Harmon, L.J., Testing quantitative genetic hypotheses about the evolutionary rate matrix for continuous characters (2008) Evol. Ecol. Res, 10, pp. 311-321; Nicholson, K.E., Glor, R.E., Kolbe, J.J., Larson, A., Hedges, S.B., Losos, J.B., Mainland colonization by island lizards (2005) J. Biogeogr, 32, pp. 929-938. , (doi:10.1111/j.1365-2699.2004.01222.x); Vavilov, N., The law of homologous series in variation (1922) J. Genet, 12, pp. 67-87. , (doi:10.1007/BF02983073); Haldane, J.B.S., (1932) The Causes of Evolution, , London, UK: Longman; Schluter, D., Adaptive radiation along genetic lines of least resistance (1996) Evolution, 50, pp. 1766-1796. , (doi:10.2307/2410734); Cheverud, J.M., Quantitative genetics and developmental constraints on evolution by selection (1984) J. Theor. Biol, 110, pp. 155-171. , (doi:10.1016/S0022-5193(84)80050-8); Turelli, M., Phenotypic evolution, constant covariances, and the maintenance of additive evolution (1998) Evolution, 42, pp. 1342-1347. , (doi:10.2307/2409017); Agrawal, A.F., Brodie, E.D., Reiseberg, L.H., Possible consequences of genes of major effect: Transient changes in the G-matrix (2001) Genetica, 112-113, pp. 33-43. , (doi:10.1023/A:1013370423638); Steppan, S.J., Phillips, P.C., Houle, D., Comparative quantitative genetics: Evolution of the G matrix (2002) Trends. Ecol. Evol, 17, pp. 320-327. , (doi:10.1016/ S0169-5347(02)02505-3); Arnold, S.J., Burger, R., Hohenlohe, P.A., Ajie, B.C., Jones, A.G., Understanding the evolution and stability of the G-matrix (2008) Evolution, 62, pp. 2451-2461. , (doi:10.1111/j.1558-5646.2008.00472.x); Kolbe, J.J., Revell, L.J., Szekely, B., Brodie, E.D., Losos III, J.B., Convergent evolution of phenotypic integration and its alignment with morphological diversification in Caribbean Anolis ecomorphs Evolution, , In press, (doi:10.1111/j.1558-5646.2011.01416.x); Pounds, J.A., Jackson, J.F., Shively, S.H., Allometric growth of the hind limbs of some terrestrial Iguanid lizards (1982) Am. Midl. Nat, 110, pp. 201-207. , (doi:10.2307/2425226); Powell, G.L., Russell, A.P., Locomotor correlates of ecomorph designation in Anolis: An examination of three sympatric species from Jamaica (1992) Can. J. Zool, 70, pp. 725-739. , (doi:10.1139/z92-107); Riedl, R., (1978) Order In Living Organisms: A Systems Analysis of Evolution, , New York, NY: Wiley; Linnen, C.R., Hoekstra, H.E., Measuring natural selection on genotypes and phenotypes (2009) Cold Spring Harbor Symp. Quant. Biol, 74, pp. 155-168. , (doi:10.1101/sqb.2009.74.045); Shapiro, M.D., Bell, M.A., Kingsley, D.M., Parallel genetic origins of pelvic reduction in vertebrates (2006) Proc. Natl Acad. Sci. USA, 103, pp. 13753-13758. , (doi:10.1073/pnas.0604706103); Kingsolver, J.G., Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N., Hill, C.E., Hoang, A., Beerli, P., The strength of phenotypic selection in natural populations (2001) Am. Nat, 157, pp. 245-261. , (doi:10.1086/319193); Kingsolver, J.G., Pfennig, D.W., Patterns and power of phenotypic selection in nature (2007) Bioscience, 57, pp. 561-572. , (doi:10.1641/B570706)
PY - 2012
Y1 - 2012
N2 - The independent evolution of similar morphologies has long been a subject of considerable interest to biologists. Does phenotypic convergence reflect the primacy of natural selection, or does development set the course of evolution by channelling variation in certain directions? Here, we examine the ontogenetic origins of relative limb length variation among Anolis lizard habitat specialists to address whether convergent phenotypes have arisen through convergent developmental trajectories. Despite the numerous developmental processes that could potentially contribute to variation in adult limb length, our analyses reveal that, in Anolis lizards, such variation is repeatedly the result of changes occurring very early in development, prior to formation of the cartilaginous long bone anlagen. © 2011 The Royal Society.
AB - The independent evolution of similar morphologies has long been a subject of considerable interest to biologists. Does phenotypic convergence reflect the primacy of natural selection, or does development set the course of evolution by channelling variation in certain directions? Here, we examine the ontogenetic origins of relative limb length variation among Anolis lizard habitat specialists to address whether convergent phenotypes have arisen through convergent developmental trajectories. Despite the numerous developmental processes that could potentially contribute to variation in adult limb length, our analyses reveal that, in Anolis lizards, such variation is repeatedly the result of changes occurring very early in development, prior to formation of the cartilaginous long bone anlagen. © 2011 The Royal Society.
U2 - 10.1098/rspb.2011.0840
DO - 10.1098/rspb.2011.0840
M3 - Research Article
SN - 0962-8452
VL - 279
SP - 739
EP - 748
JO - Proceedings of the Royal Society B: Biological Sciences
JF - Proceedings of the Royal Society B: Biological Sciences
IS - 1729
ER -