TY - JOUR
T1 - Molecular detection of intestinal parasites in a rural community of Colombia
T2 - A one health approach to explore potential environmental–zoonotic transmission
AU - Castañeda, Sergio
AU - Acosta, Claudia Patricia
AU - Vasquez-A, Luis Reinel
AU - Patiño, Luz H.
AU - Mejía, Rojelio
AU - Ramírez, Juan David
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH. Published by John Wiley & Sons Ltd.
PY - 2024
Y1 - 2024
N2 - Aims: Protozoan and helminth parasitic infections pose significant public health challenges, especially in developing countries with rural populations marked by suboptimal hygiene practices and socio-economic constraints. The parasites are the etiological agents of these infections and have a notably elevated global prevalence. Therefore, this study focuses on estimating the frequency and transmission dynamics of several parasitic species, including Blastocystis, Giardia, Cryptosporidium spp., Entamoeba histolytica, Ascaris lumbricoides, Trichuris trichiura, Taenia spp. and hookworms, within a rural community in southwest Colombia with a particular emphasis on the One Health framework, considering environmental and zoonotic transmission potentials. Methods and Results: This study involved the analysis of 125 samples, encompassing human participants (n = 99), their domestic pets (dogs) (n = 24) and water sources (n = 2). Parasite detection was carried out utilizing a combination of microscopy and molecular techniques. Furthermore, the characterization of Blastocystis subtypes (STs) was achieved through Oxford Nanopore sequencing of the rRNA-18S gene. The investigation also entailed the examination of potential associations between intestinal parasitism and various sociodemographic factors. Results revealed a high frequency of parasitic infections when employing molecular methods, with Blastocystis (n = 109/87%), Giardia (n = 20/16%), Ancylostoma duodenale (n = 28/22%), Ancylostoma ceylanicum (n = 7/5.6%), E. histolytica (n = 6/4.8%), Cryptosporidium spp. (n = 12/9.6%) and even Taenia (n = 1/0.8%) detected. Cryptosporidium spp. was also identified in water samples. Coinfections were prevalent, with 57% (n = 70) of samples exhibiting single-parasite infections and 43% (n = 53) showing various degrees of polyparasitism, emphasizing the complexity of transmission dynamics. Blastocystis subtyping, conducted via Oxford Nanopore sequencing, revealed a diversity of subtypes and coexistence patterns, with ST2 being the most prevalent. Conclusions: This research underscores the importance of using molecular techniques for frequency estimation, particularly emphasizing the relevance of zoonotic transmission in parasitic infections. It highlights the significance of the One Health approach in comprehending the circulation of parasites among animals, humans and environmental sources, thereby directly impacting public health and epidemiological surveillance.
AB - Aims: Protozoan and helminth parasitic infections pose significant public health challenges, especially in developing countries with rural populations marked by suboptimal hygiene practices and socio-economic constraints. The parasites are the etiological agents of these infections and have a notably elevated global prevalence. Therefore, this study focuses on estimating the frequency and transmission dynamics of several parasitic species, including Blastocystis, Giardia, Cryptosporidium spp., Entamoeba histolytica, Ascaris lumbricoides, Trichuris trichiura, Taenia spp. and hookworms, within a rural community in southwest Colombia with a particular emphasis on the One Health framework, considering environmental and zoonotic transmission potentials. Methods and Results: This study involved the analysis of 125 samples, encompassing human participants (n = 99), their domestic pets (dogs) (n = 24) and water sources (n = 2). Parasite detection was carried out utilizing a combination of microscopy and molecular techniques. Furthermore, the characterization of Blastocystis subtypes (STs) was achieved through Oxford Nanopore sequencing of the rRNA-18S gene. The investigation also entailed the examination of potential associations between intestinal parasitism and various sociodemographic factors. Results revealed a high frequency of parasitic infections when employing molecular methods, with Blastocystis (n = 109/87%), Giardia (n = 20/16%), Ancylostoma duodenale (n = 28/22%), Ancylostoma ceylanicum (n = 7/5.6%), E. histolytica (n = 6/4.8%), Cryptosporidium spp. (n = 12/9.6%) and even Taenia (n = 1/0.8%) detected. Cryptosporidium spp. was also identified in water samples. Coinfections were prevalent, with 57% (n = 70) of samples exhibiting single-parasite infections and 43% (n = 53) showing various degrees of polyparasitism, emphasizing the complexity of transmission dynamics. Blastocystis subtyping, conducted via Oxford Nanopore sequencing, revealed a diversity of subtypes and coexistence patterns, with ST2 being the most prevalent. Conclusions: This research underscores the importance of using molecular techniques for frequency estimation, particularly emphasizing the relevance of zoonotic transmission in parasitic infections. It highlights the significance of the One Health approach in comprehending the circulation of parasites among animals, humans and environmental sources, thereby directly impacting public health and epidemiological surveillance.
UR - http://www.scopus.com/inward/record.url?scp=85192106279&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85192106279&partnerID=8YFLogxK
U2 - 10.1111/zph.13138
DO - 10.1111/zph.13138
M3 - Research Article
C2 - 38688683
AN - SCOPUS:85192106279
SN - 1863-1959
JO - Zoonoses and Public Health
JF - Zoonoses and Public Health
ER -