Measurement of Neurovascular Coupling in Neonates

Alexander Caicedo Dorado, Dries Hendrikx, Anne Smits, Mario Lavanga, Ofelie De Wel, Liesbeth Thewissen, Katrien Jansen, Sabine Van Huffel, Gunnar Naulers

Resultado de la investigación: Contribución a RevistaArtículo

Resumen

Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments.
Idioma originalEnglish (US)
PublicaciónFrontiers in Physiology
Volumen10
DOI
EstadoPublished - feb 2019

Concepts

  • Concepto

Citar esto

Caicedo Dorado, A., Hendrikx, D., Smits, A., Lavanga, M., De Wel, O., Thewissen, L., ... Naulers, G. (2019). Measurement of Neurovascular Coupling in Neonates. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00065
Caicedo Dorado, Alexander ; Hendrikx, Dries ; Smits, Anne ; Lavanga, Mario ; De Wel, Ofelie ; Thewissen, Liesbeth ; Jansen, Katrien ; Van Huffel, Sabine ; Naulers, Gunnar. / Measurement of Neurovascular Coupling in Neonates. En: Frontiers in Physiology. 2019 ; Vol. 10.
@article{0e41e491d76e4a1bb97a66a38e0b6b46,
title = "Measurement of Neurovascular Coupling in Neonates",
abstract = "Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments.",
author = "{Caicedo Dorado}, Alexander and Dries Hendrikx and Anne Smits and Mario Lavanga and {De Wel}, Ofelie and Liesbeth Thewissen and Katrien Jansen and {Van Huffel}, Sabine and Gunnar Naulers",
year = "2019",
month = "2",
doi = "10.3389/fphys.2019.00065",
language = "English (US)",
volume = "10",
journal = "Frontiers in Physiology",
issn = "1664-042X",
publisher = "Frontiers Research Foundation",

}

Caicedo Dorado, A, Hendrikx, D, Smits, A, Lavanga, M, De Wel, O, Thewissen, L, Jansen, K, Van Huffel, S & Naulers, G 2019, 'Measurement of Neurovascular Coupling in Neonates', Frontiers in Physiology, vol. 10. https://doi.org/10.3389/fphys.2019.00065

Measurement of Neurovascular Coupling in Neonates. / Caicedo Dorado, Alexander; Hendrikx, Dries; Smits, Anne; Lavanga, Mario; De Wel, Ofelie; Thewissen, Liesbeth; Jansen, Katrien; Van Huffel, Sabine; Naulers, Gunnar.

En: Frontiers in Physiology, Vol. 10, 02.2019.

Resultado de la investigación: Contribución a RevistaArtículo

TY - JOUR

T1 - Measurement of Neurovascular Coupling in Neonates

AU - Caicedo Dorado, Alexander

AU - Hendrikx, Dries

AU - Smits, Anne

AU - Lavanga, Mario

AU - De Wel, Ofelie

AU - Thewissen, Liesbeth

AU - Jansen, Katrien

AU - Van Huffel, Sabine

AU - Naulers, Gunnar

PY - 2019/2

Y1 - 2019/2

N2 - Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments.

AB - Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments.

U2 - 10.3389/fphys.2019.00065

DO - 10.3389/fphys.2019.00065

M3 - Article

VL - 10

JO - Frontiers in Physiology

JF - Frontiers in Physiology

SN - 1664-042X

ER -