Filling the gap

A tool to automate parameter estimation for software performance models

Título traducido de la contribución: Llenando el vacío: A tool to automate parameter estimation for software performance models

Weikun Wang, Juan F. Pérez, Giuliano Casale

Resultado de la investigación: Contribución a libro /Tipo informe o reporteContribución en conferencia

5 Citas (Scopus)

Resumen

La ingeniería del rendimiento del software se basa en gran medida en modelos de aplicaciones y recursos que permiten predecir las métricas de calidad de servicio. Para estos modelos es fundamental la precisión de sus parámetros, cuyo valor puede cambiar con la aplicación y los recursos en los que se despliega. En este artículo presentamos la herramienta FG (Filling-the-gap), que automatiza la estimación de parámetros de los modelos de rendimiento de las aplicaciones. Esta herramienta implementa un conjunto de rutinas estadísticas para estimar los parámetros de los modelos de desempeño, que se ejecutan automáticamente utilizando información de monitoreo almacenada en una base de datos local.
Idioma originalEnglish (US)
Título de la publicación alojada1st International Workshop on Quality-Aware DevOps, QUDOS 2015 - Proceedings
EditorialAssociation for Computing Machinery
Páginas31-32
Número de páginas2
ISBN (versión digital)9781450338172
DOI
EstadoPublished - sep 1 2015
Publicado de forma externa
Evento1st International Workshop on Quality-Aware DevOps, QUDOS 2015 - Bergamo
Duración: sep 1 2015 → …

Conference

Conference1st International Workshop on Quality-Aware DevOps, QUDOS 2015
PaísItaly
CiudadBergamo
Período9/1/15 → …

Huella dactilar

Parameter estimation
Quality of service
Monitoring

All Science Journal Classification (ASJC) codes

  • Software

Citar esto

Wang, W., Pérez, J. F., & Casale, G. (2015). Filling the gap: A tool to automate parameter estimation for software performance models. En 1st International Workshop on Quality-Aware DevOps, QUDOS 2015 - Proceedings (pp. 31-32). Association for Computing Machinery. https://doi.org/10.1145/2804371.2804379
Wang, Weikun ; Pérez, Juan F. ; Casale, Giuliano. / Filling the gap : A tool to automate parameter estimation for software performance models. 1st International Workshop on Quality-Aware DevOps, QUDOS 2015 - Proceedings. Association for Computing Machinery, 2015. pp. 31-32
@inproceedings{e7522bdfcf334b5bb5f315245ae5a3ac,
title = "Filling the gap: A tool to automate parameter estimation for software performance models",
abstract = "Software performance engineering heavily relies on application and resource models that enable the prediction of Quality-of-Service metrics. Critical to these models is the accuracy of their parameters, the value of which can change with the application and the resources where it is deployed. In this paper we introduce the Filling-the-gap (FG) tool, which automates the parameter estimation of application performance models. This tool implements a set of statistical routines to estimate the parameters of performance models, which are automatically executed using monitoring information kept in a local database.",
author = "Weikun Wang and P{\'e}rez, {Juan F.} and Giuliano Casale",
year = "2015",
month = "9",
day = "1",
doi = "10.1145/2804371.2804379",
language = "English (US)",
pages = "31--32",
booktitle = "1st International Workshop on Quality-Aware DevOps, QUDOS 2015 - Proceedings",
publisher = "Association for Computing Machinery",
address = "United States",

}

Wang, W, Pérez, JF & Casale, G 2015, Filling the gap: A tool to automate parameter estimation for software performance models. En 1st International Workshop on Quality-Aware DevOps, QUDOS 2015 - Proceedings. Association for Computing Machinery, pp. 31-32, Bergamo, 9/1/15. https://doi.org/10.1145/2804371.2804379

Filling the gap : A tool to automate parameter estimation for software performance models. / Wang, Weikun; Pérez, Juan F.; Casale, Giuliano.

1st International Workshop on Quality-Aware DevOps, QUDOS 2015 - Proceedings. Association for Computing Machinery, 2015. p. 31-32.

Resultado de la investigación: Contribución a libro /Tipo informe o reporteContribución en conferencia

TY - GEN

T1 - Filling the gap

T2 - A tool to automate parameter estimation for software performance models

AU - Wang, Weikun

AU - Pérez, Juan F.

AU - Casale, Giuliano

PY - 2015/9/1

Y1 - 2015/9/1

N2 - Software performance engineering heavily relies on application and resource models that enable the prediction of Quality-of-Service metrics. Critical to these models is the accuracy of their parameters, the value of which can change with the application and the resources where it is deployed. In this paper we introduce the Filling-the-gap (FG) tool, which automates the parameter estimation of application performance models. This tool implements a set of statistical routines to estimate the parameters of performance models, which are automatically executed using monitoring information kept in a local database.

AB - Software performance engineering heavily relies on application and resource models that enable the prediction of Quality-of-Service metrics. Critical to these models is the accuracy of their parameters, the value of which can change with the application and the resources where it is deployed. In this paper we introduce the Filling-the-gap (FG) tool, which automates the parameter estimation of application performance models. This tool implements a set of statistical routines to estimate the parameters of performance models, which are automatically executed using monitoring information kept in a local database.

UR - http://www.scopus.com/inward/record.url?scp=84960411384&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84960411384&partnerID=8YFLogxK

U2 - 10.1145/2804371.2804379

DO - 10.1145/2804371.2804379

M3 - Conference contribution

SP - 31

EP - 32

BT - 1st International Workshop on Quality-Aware DevOps, QUDOS 2015 - Proceedings

PB - Association for Computing Machinery

ER -

Wang W, Pérez JF, Casale G. Filling the gap: A tool to automate parameter estimation for software performance models. En 1st International Workshop on Quality-Aware DevOps, QUDOS 2015 - Proceedings. Association for Computing Machinery. 2015. p. 31-32 https://doi.org/10.1145/2804371.2804379