Leveraging Semantic Parsing using Text Embeddings and Reinforcement Learning

Jessenia Piza-Londono, Edgar J. Andrade-Lotero

Producción científica: Capítulo en Libro/InformeContribución a la conferencia

Resumen

Representing natural language information is a key challenge in Artificial Intelligence and Cognitive Science, requiring the transformation of unstructured data into formats suitable for computational tasks. While logical formalisms offer robust methods for information representation, their complexity often limits widespread adoption. Conversely, transformer architectures provide strong generalization capabilities but struggle with logical inference tasks. To address both the need for generalization and reliable logical inference, we propose a novel approach using deep reinforcement learning, enabling agents to autonomously learn the rules of semantic parsing. Our preliminary results indicate successful generation of appropriate representations for simple queries. Future work will extend the environment to handle a wider range of real-world sentences.

Idioma originalInglés estadounidense
Título de la publicación alojada2024 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2024 - Proceedings
EditoresAlvaro David Orjuela-Canon
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350374575
DOI
EstadoPublicada - 2024
Evento2024 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2024 - Bogota, Colombia
Duración: nov. 13 2024nov. 15 2024

Serie de la publicación

Nombre2024 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2024 - Proceedings

Conferencia

Conferencia2024 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2024
País/TerritorioColombia
CiudadBogota
Período11/13/2411/15/24

Áreas temáticas de ASJC Scopus

  • Inteligencia artificial
  • Informática aplicada
  • Visión artificial y reconocimiento de patrones
  • Seguridad, riesgos, fiabilidad y calidad

Citar esto