TY - JOUR
T1 - Inaccurate reconstruction of ancestral GC levels creates a "vanishing isochores" effect
AU - Alvarez-Valin, Fernando
AU - Clay, Oliver
AU - Cruveiller, Stéphane
AU - Bernardi, Giorgio
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2004/5
Y1 - 2004/5
N2 - It has recently been proposed, based on an analysis of orthologous gene sequences from closely related species, that GC-rich regions of primate and cetartiodactyl genomes are becoming GC-poorer, i.e., that GC-rich isochores are now vanishing in these lineages. We review an artefact of parsimony-based ancestor reconstruction in GC-rich DNA, and show that its magnitude explains the apparent vanishing of the GC-richest regions in cetartiodactyls, even if they are in fact at compositional equilibrium. The presently available data do not allow the disequilibrium hypothesis to be entirely ruled out in primates, yet, as we argue here, second-order artefacts can accumulate. They are therefore likely to explain many if not all of the observations, rendering unnecessary the general hypothesis of vanishing GC-rich isochores in mammals.
AB - It has recently been proposed, based on an analysis of orthologous gene sequences from closely related species, that GC-rich regions of primate and cetartiodactyl genomes are becoming GC-poorer, i.e., that GC-rich isochores are now vanishing in these lineages. We review an artefact of parsimony-based ancestor reconstruction in GC-rich DNA, and show that its magnitude explains the apparent vanishing of the GC-richest regions in cetartiodactyls, even if they are in fact at compositional equilibrium. The presently available data do not allow the disequilibrium hypothesis to be entirely ruled out in primates, yet, as we argue here, second-order artefacts can accumulate. They are therefore likely to explain many if not all of the observations, rendering unnecessary the general hypothesis of vanishing GC-rich isochores in mammals.
UR - http://www.scopus.com/inward/record.url?scp=1942452938&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1942452938&partnerID=8YFLogxK
U2 - 10.1016/j.ympev.2004.01.016
DO - 10.1016/j.ympev.2004.01.016
M3 - Research Article
C2 - 15062812
AN - SCOPUS:1942452938
SN - 1055-7903
VL - 31
SP - 788
EP - 793
JO - Molecular Phylogenetics and Evolution
JF - Molecular Phylogenetics and Evolution
IS - 2
ER -