Establishing connections between Aristotle's natural deduction and first-order logic

Edgar José Andrade, Edward Samuel Becerra

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

This article studies the mathematical properties of two systems that model Aristotle's original syllogistic and the relationship obtaining between them. These systems are Corcoran's natural deduction syllogistic and Lukasiewicz's axiomatization of the syllogistic. We show that by translating the former into a first-order theory, which we call TRD, we can establish a precise relationship between the two systems. We prove within the framework of first-order logic a number of logical properties about TRD that bear upon the same properties of the natural deduction counterpart - that is, Corcoran's system. Moreover, the first-order logic framework that we work with allows us to understand how complicated the semantics of the syllogistic is in providing us with examples of bizarre, unexpected interpretations of the syllogistic rules. Finally, we provide a first attempt at finding the structure of that semantics, reducing the search to the characterization of the class of models of TRD.

Idioma originalInglés estadounidense
Páginas (desde-hasta)309-325
Número de páginas17
PublicaciónHistory and Philosophy of Logic
Volumen29
N.º4
DOI
EstadoPublicada - nov 2008

All Science Journal Classification (ASJC) codes

  • Historia
  • Historia y filosofía de la ciencia

Huella

Profundice en los temas de investigación de 'Establishing connections between Aristotle's natural deduction and first-order logic'. En conjunto forman una huella única.

Citar esto