Electromechanical characterization of a 3D printed dielectric material for dielectric electroactive polymer actuators

David Gonzalez, Jose Garcia, Brittany Newell

Producción científica: Contribución a una revistaArtículo de Investigaciónrevisión exhaustiva

41 Citas (Scopus)

Resumen

Dielectric electroactive polymers (DEAPs) represent a subclass of smart materials that are capable of converting between electrical and mechanical energy. These materials can be used as energy harvesters, sensors, and actuators. However, current production and testing of these devices is limited and requires multiple step processes for fabrication. This paper presents an alternate production method via 3D printing using Thermoplastic Polyurethane (TPU) as a dielectric elastomer. This study provides electromechanical characterization of flexible dielectric films produced by additive manufacturing and demonstrates their use as DEAP actuators. The dielectric material characterization of TPU includes: measurement of the dielectric constant, percentage radial elongation, tensile properties, pre-strain effects on actuation, surface topography, and measured actuation under high voltage. The results demonstrated a high dielectric constant and ideal elongation performance for this material, making the material suitable for use as a DEAP actuator. In addition, it was experimentally determined that the tensile properties of the material depend on the printing angle and thickness of the samples thereby making these properties controllable using 3D printing. Using surface topography, it was possible to analyze how the printing path affects the roughness of the films and consequently affects the voltage breakdown of the structure and creates preferential deformation directions. Actuators produced with concentric circle paths produced an area expansion of 4.73% uniformly in all directions. Actuators produced with line paths produced an area expansion of 5.71% in the direction where the printed lines are parallel to the deformation direction, and 4.91% in the direction where the printed lines are perpendicular to the deformation direction.

Idioma originalInglés estadounidense
Número de artículo111565
PublicaciónSensors and Actuators, A: Physical
Volumen297
DOI
EstadoPublicada - oct. 1 2019
Publicado de forma externa

Áreas temáticas de ASJC Scopus

  • Materiales electrónicos, ópticos y magnéticos
  • Instrumental
  • Física de la materia condensada
  • Superficies, recubrimientos y láminas
  • Metales y aleaciones
  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'Electromechanical characterization of a 3D printed dielectric material for dielectric electroactive polymer actuators'. En conjunto forman una huella única.

Citar esto