DICE

Quality-driven development of data-intensive cloud applications

Título traducido de la contribución: DICE: Desarrollo basado en la calidad de aplicaciones de nube con uso intensivo de datos

G. Casale, D. Ardagna, M. Artac, F. Barbier, E. Di Nitto, A. Henry, G. Iuhasz, C. Joubert, J. Merseguer, V. I. Munteanu, J. F. Pérez, D. Petcu, M. Rossi, C. Sheridan, I. Spais, D. Vladušič

Resultado de la investigación: Contribución a libro /Tipo informe o reporteContribución en conferencia

38 Citas (Scopus)

Resumen

La ingeniería basada en modelos (MDE) a menudo incluye técnicas de garantía de calidad (QA) para ayudar a los desarrolladores a crear software que cumpla con los requisitos de confiabilidad, eficiencia y seguridad. En este documento, consideramos la cuestión de cómo MDE, consciente de la calidad, debería apoyar los sistemas de software que requieren una gran cantidad de datos. Este es un reto difícil, ya que los modelos y las técnicas de garantía de calidad existentes ignoran en gran medida las propiedades de los datos, como los volúmenes, las velocidades o la ubicación de los datos. Además, la garantía de calidad requiere la capacidad de caracterizar el comportamiento de tecnologías como Hadoop/MapReduce, NoSQL y el procesamiento basado en secuencias, que no se comprenden bien desde el punto de vista del modelado. Para fomentar una respuesta comunitaria a estos desafíos, presentamos la agenda de investigación de DICE, una metodología MDE de calidad para aplicaciones de cloud intensivas en datos. El objetivo de DICE es desarrollar una cadena de herramientas de ingeniería de calidad que ofrezca simulación, verificación y optimización arquitectónica para aplicaciones Big Data. Resumimos algunos de los principales desafíos que implica el desarrollo de estas herramientas y de los modelos que las sustentan.

Idioma originalEnglish (US)
Título de la publicación alojadaProceedings - 7th International Workshop on Modeling in Software Engineering, MiSE 2015
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas78-83
Número de páginas6
ISBN (versión digital)9781479919345
DOI
EstadoPublished - ene 1 2015
Publicado de forma externa
Evento7th International Workshop on Modeling in Software Engineering, MiSE 2015 - Florence
Duración: may 16 2015may 17 2015

Conference

Conference7th International Workshop on Modeling in Software Engineering, MiSE 2015
PaísItaly
CiudadFlorence
Período5/16/155/17/15

Huella dactilar

Quality Assurance
Quality assurance
Engineering
Model
MapReduce
Software System
Safety
Software
Optimization
Methodology
Requirements
Processing
Modeling
Simulation

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Software

Citar esto

Casale, G., Ardagna, D., Artac, M., Barbier, F., Di Nitto, E., Henry, A., ... Vladušič, D. (2015). DICE: Quality-driven development of data-intensive cloud applications. En Proceedings - 7th International Workshop on Modeling in Software Engineering, MiSE 2015 (pp. 78-83). [7167407] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/MiSE.2015.21
Casale, G. ; Ardagna, D. ; Artac, M. ; Barbier, F. ; Di Nitto, E. ; Henry, A. ; Iuhasz, G. ; Joubert, C. ; Merseguer, J. ; Munteanu, V. I. ; Pérez, J. F. ; Petcu, D. ; Rossi, M. ; Sheridan, C. ; Spais, I. ; Vladušič, D. / DICE : Quality-driven development of data-intensive cloud applications. Proceedings - 7th International Workshop on Modeling in Software Engineering, MiSE 2015. Institute of Electrical and Electronics Engineers Inc., 2015. pp. 78-83
@inproceedings{6663aeb8047547a08df69ebd12b7e20c,
title = "DICE: Quality-driven development of data-intensive cloud applications",
abstract = "Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a difficult challenge, since existing models and QA techniques largely ignore properties of data such as volumes, velocities, or data location. Furthermore, QA requires the ability to characterize the behavior of technologies such as Hadoop/MapReduce, NoSQL, and stream-based processing, which are poorly understood from a modeling standpoint. To foster a community response to these challenges, we present the research agenda of DICE, a quality-aware MDE methodology for data-intensive cloud applications. DICE aims at developing a quality engineering tool chain offering simulation, verification, and architectural optimization for Big Data applications. We overview some key challenges involved in developing these tools and the underpinning models.",
author = "G. Casale and D. Ardagna and M. Artac and F. Barbier and {Di Nitto}, E. and A. Henry and G. Iuhasz and C. Joubert and J. Merseguer and Munteanu, {V. I.} and P{\'e}rez, {J. F.} and D. Petcu and M. Rossi and C. Sheridan and I. Spais and D. Vladušič",
year = "2015",
month = "1",
day = "1",
doi = "10.1109/MiSE.2015.21",
language = "English (US)",
pages = "78--83",
booktitle = "Proceedings - 7th International Workshop on Modeling in Software Engineering, MiSE 2015",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
address = "United States",

}

Casale, G, Ardagna, D, Artac, M, Barbier, F, Di Nitto, E, Henry, A, Iuhasz, G, Joubert, C, Merseguer, J, Munteanu, VI, Pérez, JF, Petcu, D, Rossi, M, Sheridan, C, Spais, I & Vladušič, D 2015, DICE: Quality-driven development of data-intensive cloud applications. En Proceedings - 7th International Workshop on Modeling in Software Engineering, MiSE 2015., 7167407, Institute of Electrical and Electronics Engineers Inc., pp. 78-83, Florence, 5/16/15. https://doi.org/10.1109/MiSE.2015.21

DICE : Quality-driven development of data-intensive cloud applications. / Casale, G.; Ardagna, D.; Artac, M.; Barbier, F.; Di Nitto, E.; Henry, A.; Iuhasz, G.; Joubert, C.; Merseguer, J.; Munteanu, V. I.; Pérez, J. F.; Petcu, D.; Rossi, M.; Sheridan, C.; Spais, I.; Vladušič, D.

Proceedings - 7th International Workshop on Modeling in Software Engineering, MiSE 2015. Institute of Electrical and Electronics Engineers Inc., 2015. p. 78-83 7167407.

Resultado de la investigación: Contribución a libro /Tipo informe o reporteContribución en conferencia

TY - GEN

T1 - DICE

T2 - Quality-driven development of data-intensive cloud applications

AU - Casale, G.

AU - Ardagna, D.

AU - Artac, M.

AU - Barbier, F.

AU - Di Nitto, E.

AU - Henry, A.

AU - Iuhasz, G.

AU - Joubert, C.

AU - Merseguer, J.

AU - Munteanu, V. I.

AU - Pérez, J. F.

AU - Petcu, D.

AU - Rossi, M.

AU - Sheridan, C.

AU - Spais, I.

AU - Vladušič, D.

PY - 2015/1/1

Y1 - 2015/1/1

N2 - Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a difficult challenge, since existing models and QA techniques largely ignore properties of data such as volumes, velocities, or data location. Furthermore, QA requires the ability to characterize the behavior of technologies such as Hadoop/MapReduce, NoSQL, and stream-based processing, which are poorly understood from a modeling standpoint. To foster a community response to these challenges, we present the research agenda of DICE, a quality-aware MDE methodology for data-intensive cloud applications. DICE aims at developing a quality engineering tool chain offering simulation, verification, and architectural optimization for Big Data applications. We overview some key challenges involved in developing these tools and the underpinning models.

AB - Model-driven engineering (MDE) often features quality assurance (QA) techniques to help developers creating software that meets reliability, efficiency, and safety requirements. In this paper, we consider the question of how quality-aware MDE should support data-intensive software systems. This is a difficult challenge, since existing models and QA techniques largely ignore properties of data such as volumes, velocities, or data location. Furthermore, QA requires the ability to characterize the behavior of technologies such as Hadoop/MapReduce, NoSQL, and stream-based processing, which are poorly understood from a modeling standpoint. To foster a community response to these challenges, we present the research agenda of DICE, a quality-aware MDE methodology for data-intensive cloud applications. DICE aims at developing a quality engineering tool chain offering simulation, verification, and architectural optimization for Big Data applications. We overview some key challenges involved in developing these tools and the underpinning models.

UR - http://www.scopus.com/inward/record.url?scp=84964265469&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84964265469&partnerID=8YFLogxK

U2 - 10.1109/MiSE.2015.21

DO - 10.1109/MiSE.2015.21

M3 - Conference contribution

SP - 78

EP - 83

BT - Proceedings - 7th International Workshop on Modeling in Software Engineering, MiSE 2015

PB - Institute of Electrical and Electronics Engineers Inc.

ER -

Casale G, Ardagna D, Artac M, Barbier F, Di Nitto E, Henry A y otros. DICE: Quality-driven development of data-intensive cloud applications. En Proceedings - 7th International Workshop on Modeling in Software Engineering, MiSE 2015. Institute of Electrical and Electronics Engineers Inc. 2015. p. 78-83. 7167407 https://doi.org/10.1109/MiSE.2015.21