Resumen
Owing to the high complexity of diatom community data, there is a special need for methods accounting for complex non-linear gradients. A Kohonen's self-organizing map (SOM) is a neural network with unsupervised learning. It allows both unbiased classification of the communities and visualization of biological gradients on a two-dimensional plane. However, as with other neural networks, many parameters must be set. A new R-package with a SOM parameterization specifically suited to diatom communities has been developed. Further developments will consist of creating a graphical user interface in order to make this method easier to use for the scientific community.
Idioma original | Inglés estadounidense |
---|---|
Páginas (desde-hasta) | 5-9 |
Número de páginas | 5 |
Publicación | Diatom Research |
Volumen | 29 |
N.º | 1 |
DOI | |
Estado | Publicada - ene. 2 2014 |
Publicado de forma externa | Sí |
Áreas temáticas de ASJC Scopus
- Ciencias acuáticas