Deep Semi-Supervised and Self-Supervised Learning for Diabetic Retinopathy Detection

Jose Arrieta, Oscar J. Perdomo, Fabio A. González

Producción científica: Capítulo en Libro/InformeContribución a la conferencia

Resumen

Diabetic retinopathy (DR) is one of the leading causes of blindness in the working-age population of developed countries, caused by a side effect of diabetes that reduces the blood supply to the retina. Deep neural networks have been widely used in automated systems for DR classification on eye fundus images. However, these models need a large number of annotated images. In the medical domain, annotations from experts are costly, tedious, and time-consuming; as a result, a limited number of annotated images are available. This paper presents a semi-supervised method that leverages unlabeled images and labeled ones to train a model that detects diabetic retinopathy. The proposed method uses unsupervised pretraining via self-supervised learning followed by supervised fine-tuning with a small set of labeled images and knowledge distillation to increase the performance in a classification task. This method was evaluated on the EyePACS test and Messidor-2 dataset achieving 0.94 and 0.89 AUC respectively using only 2% of EyePACS train labeled images.

Idioma originalInglés estadounidense
Título de la publicación alojada18th International Symposium on Medical Information Processing and Analysis
EditoresJorge Brieva, Pamela Guevara, Natasha Lepore, Marius G. Linguraru, Leticia Rittner, Eduardo Romero Castro
EditorialSPIE
ISBN (versión digital)978-151-066-254-4
DOI
EstadoPublicada - 2023
Evento18th International Symposium on Medical Information Processing and Analysis - Valparaiso, Chile
Duración: nov. 9 2022nov. 11 2022

Serie de la publicación

NombreProceedings of SPIE - The International Society for Optical Engineering
Volumen12567
ISSN (versión impresa)0277-786X
ISSN (versión digital)1996-756X

Conferencia

Conferencia18th International Symposium on Medical Information Processing and Analysis
País/TerritorioChile
CiudadValparaiso
Período11/9/2211/11/22

Áreas temáticas de ASJC Scopus

  • Materiales electrónicos, ópticos y magnéticos
  • Física de la materia condensada
  • Informática aplicada
  • Matemáticas aplicadas
  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'Deep Semi-Supervised and Self-Supervised Learning for Diabetic Retinopathy Detection'. En conjunto forman una huella única.

Citar esto