Decoding EEG rhythms offline and online during motor imagery for standing and sitting based on a brain-computer interface

Nayid Triana-Guzman, Alvaro D. Orjuela-Cañon, Andres L. Jutinico, Omar Mendoza-Montoya, Javier M. Antelis

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Motor imagery (MI)-based brain-computer interface (BCI) systems have shown promising advances for lower limb motor rehabilitation. The purpose of this study was to develop an MI-based BCI for the actions of standing and sitting. Thirty-two healthy subjects participated in the study using 17 active EEG electrodes. We used a combination of the filter bank common spatial pattern (FBCSP) method and the regularized linear discriminant analysis (RLDA) technique for decoding EEG rhythms offline and online during motor imagery for standing and sitting. The offline analysis indicated the classification of motor imagery and idle state provided a mean accuracy of 88.51 ± 1.43% and 85.29 ± 1.83% for the sit-to-stand and stand-to-sit transitions, respectively. The mean accuracies of the sit-to-stand and stand-to-sit online experiments were 94.69 ± 1.29% and 96.56 ± 0.83%, respectively. From these results, we believe that the MI-based BCI may be useful to future brain-controlled standing systems.

Idioma originalInglés estadounidense
Número de artículo961089
Páginas (desde-hasta)961089
PublicaciónFrontiers in Neuroinformatics
Volumen16
DOI
EstadoPublicada - sep. 2 2022

Áreas temáticas de ASJC Scopus

  • Neurociencia (miscelánea)
  • Ingeniería biomédica
  • Informática aplicada

Huella

Profundice en los temas de investigación de 'Decoding EEG rhythms offline and online during motor imagery for standing and sitting based on a brain-computer interface'. En conjunto forman una huella única.

Citar esto