Continuous Matrix Product States for Quantum Fields: An Energy Minimization Algorithm

Martin Ganahl, Julián Rincón, Guifre Vidal

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

14 Citas (Scopus)

Resumen

The generalization of matrix product states (MPS) to continuous systems, as proposed in the breakthrough Letter of Verstraete and Cirac [Phys. Rev. Lett. 104, 190405 (2010).PRLTAO0031-900710.1103/PhysRevLett.104.190405], provides a powerful variational ansatz for the ground state of strongly interacting quantum field theories in one spatial dimension. A continuous MPS (cMPS) approximation to the ground state can be obtained by simulating a Euclidean time evolution. In this Letter we propose a cMPS optimization algorithm based instead on energy minimization by gradient methods and demonstrate its performance by applying it to the Lieb-Liniger model (an integrable model of an interacting bosonic field) directly in the thermodynamic limit. We observe a very significant computational speed-up, of more than 2 orders of magnitude, with respect to simulating a Euclidean time evolution. As a result, a much larger cMPS bond dimension D can be reached (e.g., D=256 with moderate computational resources), thus helping unlock the full potential of the cMPS representation for ground state studies.

Idioma originalInglés estadounidense
Número de artículo220402
PublicaciónPhysical Review Letters
Volumen118
N.º22
DOI
EstadoPublicada - jun 2 2017
Publicado de forma externa

All Science Journal Classification (ASJC) codes

  • Física y astronomía (todo)

Huella

Profundice en los temas de investigación de 'Continuous Matrix Product States for Quantum Fields: An Energy Minimization Algorithm'. En conjunto forman una huella única.

Citar esto