Rank Gaps and the Size of the Core for Roommate Problems

Título traducido de la contribución: Brechas de clasificación y el tamaño del núcleo para los problemas de compañeros de cuarto

Paula Jaramillo, Cagatay Kayi, Flip Klijn

Resultado de la investigación: Documento de Trabajo

Resumen


Este trabajo trata de los problemas de compañeros de cuarto (Gale y Shapley, 1962) que son solucionables, es decir, que tienen un núcleo no vacío (conjunto de emparejamientos estables). Se estudia el grado de asimilación de las coincidencias estables y el tamaño del núcleo por medio de las diferencias de rango máximo y medio. Proporcionamos límites superiores en términos de desacuerdos máximos y medios en las clasificaciones de los agentes. Finalmente, demostramos que la mayoría de nuestros límites son estrechos.
Idioma originalEnglish (US)
Número de páginas20
Volumen196
EstadoPublished - 2017

Series de publicaciones

NombreBarcelona GSE Working Papers Series
N.º956

Huella dactilar

Stable matching
Upper bound
Ranking

Citar esto

Jaramillo, P., Kayi, C., & Klijn, F. (2017). Rank Gaps and the Size of the Core for Roommate Problems. (Barcelona GSE Working Papers Series ; N.º 956).
Jaramillo, Paula ; Kayi, Cagatay ; Klijn, Flip. / Rank Gaps and the Size of the Core for Roommate Problems. 2017. (Barcelona GSE Working Papers Series ; 956).
@techreport{bfae104371cf45dc9d1719a79cc4bf35,
title = "Rank Gaps and the Size of the Core for Roommate Problems",
abstract = "This paper deals with roommate problems (Gale and Shapley, 1962) that are solvable, i.e., have a non-empty core (set of stable matchings). We study the assortativeness of stable matchings and the size of the core by means of maximal and average rank gaps. We provide upper bounds in terms of maximal and average disagreements in the agents’ rankings. Finally, we show that most of our bounds are tight.",
author = "Paula Jaramillo and Cagatay Kayi and Flip Klijn",
year = "2017",
language = "English (US)",
volume = "196",
series = "Barcelona GSE Working Papers Series",
number = "956",
type = "WorkingPaper",

}

Jaramillo, P, Kayi, C & Klijn, F 2017 'Rank Gaps and the Size of the Core for Roommate Problems' Barcelona GSE Working Papers Series , n.º 956.

Rank Gaps and the Size of the Core for Roommate Problems. / Jaramillo, Paula; Kayi, Cagatay; Klijn, Flip.

2017. (Barcelona GSE Working Papers Series ; N.º 956).

Resultado de la investigación: Documento de Trabajo

TY - UNPB

T1 - Rank Gaps and the Size of the Core for Roommate Problems

AU - Jaramillo, Paula

AU - Kayi, Cagatay

AU - Klijn, Flip

PY - 2017

Y1 - 2017

N2 - This paper deals with roommate problems (Gale and Shapley, 1962) that are solvable, i.e., have a non-empty core (set of stable matchings). We study the assortativeness of stable matchings and the size of the core by means of maximal and average rank gaps. We provide upper bounds in terms of maximal and average disagreements in the agents’ rankings. Finally, we show that most of our bounds are tight.

AB - This paper deals with roommate problems (Gale and Shapley, 1962) that are solvable, i.e., have a non-empty core (set of stable matchings). We study the assortativeness of stable matchings and the size of the core by means of maximal and average rank gaps. We provide upper bounds in terms of maximal and average disagreements in the agents’ rankings. Finally, we show that most of our bounds are tight.

M3 - Working paper

VL - 196

T3 - Barcelona GSE Working Papers Series

BT - Rank Gaps and the Size of the Core for Roommate Problems

ER -

Jaramillo P, Kayi C, Klijn F. Rank Gaps and the Size of the Core for Roommate Problems. 2017. (Barcelona GSE Working Papers Series ; 956).