Branching random motions, nonlinear hyperbolic systems and travelling waves

Nikita Ratanov

Resultado de la investigación: Contribución a una revistaArtículo

3 Citas (Scopus)

Resumen

A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independent of random motion, and intensities of reverses are defined by a particle's current direction. A solution of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) has a so-called McKean representation via such processes. Commonly this system possesses travelling-wave solutions. The convergence of solutions with Heaviside terminal data to the travelling waves is discussed. The paper realizes the McKean's program for the Kolmogorov- Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role. © EDP Sciences, SMAI 2006.
Idioma originalInglés estadounidense
Páginas (desde-hasta)236-257
Número de páginas22
PublicaciónESAIM - Probability and Statistics
DOI
EstadoPublicada - dic 1 2006

    Huella digital

Citar esto