Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting

Cristian Rodríguez Rivero, Julián Pucheta, Daniel Patiño, Jose Luis Puglisi, Paula Otaño, Leonardo Franco, Gustavo Juarez, Efrén Gorrostieta, Alvaro David Orjuela-Cañón

Producción científica: Capítulo en Libro/InformeCapítuloInvestigación

1 Cita (Scopus)

Resumen

For time series forecasting, obtaining models is based on the use of past observations from the same sequence. In those cases, when the model is learning from data, there is not an extra information that discuss about the quantity of noise inside the data available. In practice, it is necessary to deal with finite noisy datasets, which lead to uncertainty about the propriety of the model. For this problem, the employment of the Bayesian inference tools are preferable. A modified algorithm used for training a long-short term memory recurrent neural network for time series forecasting is presented. This approach was chosen to improve the forecasting of the original series, employing an implementation based on the minimization of the associated Kullback-Leibler Information Criterion. For comparison, a nonlinear autoregressive model implemented with a feedforward neural network was also presented. A simulation study was conducted to evaluate and illustrate results, comparing this approach with Bayesian neural-networks-based algorithms for artificial chaotic time-series and showing an improvement in terms of forecasting errors.
Idioma originalInglés estadounidense
Título de la publicación alojadaApplications of Computational Intelligence - 2nd IEEE Colombian Conference, ColCACI 2019, Revised Selected Papers
EditoresAlvaro David Orjuela-Cañón, Juan Carlos Figueroa-García, Julián David Arias-Londoño
EditorialSpringer
Páginas197-208
Número de páginas12
ISBN (versión impresa)9783030362102
DOI
EstadoPublicada - dic. 5 2019
Evento2nd IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019 - Barranquilla, Colombia
Duración: jun. 5 2019jun. 7 2019

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1096 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia2nd IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019
País/TerritorioColombia
CiudadBarranquilla
Período6/5/196/7/19

Áreas temáticas de ASJC Scopus

  • Ciencia de la Computación General
  • Matemáticas General

Huella

Profundice en los temas de investigación de 'Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting'. En conjunto forman una huella única.

Citar esto