Allocation rules on networks

Rahmi İlkılıç, Çağatay Kayı

Resultado de la investigación: Contribución a RevistaArtículo

1 Cita (Scopus)

Resumen

© 2014, Springer-Verlag Berlin Heidelberg.When allocating a resource, geographical and infrastructural constraints have to be taken into account. We study the problem of distributing a resource through a network from sources endowed with the resource to citizens with claims. A link between a source and a citizen depicts the possibility of a transfer from the source to the citizen. Given the endowments at each source, the claims of citizens, and the network, the question is how to allocate the available resources among the citizens. We consider a simple allocation problem that is free of network constraints, where the total amount can be freely distributed. The simple allocation problem is a claims problem where the total amount of claims is greater than what is available. We focus on resource monotonic and anonymous bilateral principles satisfying a regularity condition and extend these principles to allocation rules on networks. We require the extension to preserve the essence of the bilateral principle for each pair of citizens in the network. We call this condition pairwise robustness with respect to the bilateral principle. We provide an algorithm and show that each bilateral principle has a unique extension which is pairwise robust (Theorem 1). Next, we consider a Rawlsian criteria of distributive justice and show that there is a unique “Rawls fair” rule that equals the extension given by the algorithm (Theorem 2). Pairwise robustness and Rawlsian fairness are two sides of the same coin, the former being a pairwise and the latter a global requirement on the allocation given by a rule. We also show as a corollary that any parametric principle can be extended to an allocation rule (Corollary 1). Finally, we give applications of the algorithm for the egalitarian, the proportional, and the contested garment bilateral principles (Example 1).
Idioma originalEnglish (US)
Páginas (desde-hasta)877-892
Número de páginas16
PublicaciónSocial Choice and Welfare
DOI
EstadoPublished - ene 1 2014

Huella dactilar

citizen
resources
distributive justice
regularity
Berlin
fairness
Allocation rules
Bilateral
Resources
John Rawls
Allocation problem
Robustness

Citar esto

İlkılıç, Rahmi ; Kayı, Çağatay. / Allocation rules on networks. En: Social Choice and Welfare. 2014 ; pp. 877-892.
@article{2ec834fb56144b7a9028597005dc93e9,
title = "Allocation rules on networks",
abstract = "{\circledC} 2014, Springer-Verlag Berlin Heidelberg.When allocating a resource, geographical and infrastructural constraints have to be taken into account. We study the problem of distributing a resource through a network from sources endowed with the resource to citizens with claims. A link between a source and a citizen depicts the possibility of a transfer from the source to the citizen. Given the endowments at each source, the claims of citizens, and the network, the question is how to allocate the available resources among the citizens. We consider a simple allocation problem that is free of network constraints, where the total amount can be freely distributed. The simple allocation problem is a claims problem where the total amount of claims is greater than what is available. We focus on resource monotonic and anonymous bilateral principles satisfying a regularity condition and extend these principles to allocation rules on networks. We require the extension to preserve the essence of the bilateral principle for each pair of citizens in the network. We call this condition pairwise robustness with respect to the bilateral principle. We provide an algorithm and show that each bilateral principle has a unique extension which is pairwise robust (Theorem 1). Next, we consider a Rawlsian criteria of distributive justice and show that there is a unique “Rawls fair” rule that equals the extension given by the algorithm (Theorem 2). Pairwise robustness and Rawlsian fairness are two sides of the same coin, the former being a pairwise and the latter a global requirement on the allocation given by a rule. We also show as a corollary that any parametric principle can be extended to an allocation rule (Corollary 1). Finally, we give applications of the algorithm for the egalitarian, the proportional, and the contested garment bilateral principles (Example 1).",
author = "Rahmi İlkılı{\cc} and {\cC}ağatay Kayı",
year = "2014",
month = "1",
day = "1",
doi = "10.1007/s00355-014-0815-x",
language = "English (US)",
pages = "877--892",
journal = "Social Choice and Welfare",
issn = "0176-1714",
publisher = "Springer New York",

}

Allocation rules on networks. / İlkılıç, Rahmi; Kayı, Çağatay.

En: Social Choice and Welfare, 01.01.2014, p. 877-892.

Resultado de la investigación: Contribución a RevistaArtículo

TY - JOUR

T1 - Allocation rules on networks

AU - İlkılıç, Rahmi

AU - Kayı, Çağatay

PY - 2014/1/1

Y1 - 2014/1/1

N2 - © 2014, Springer-Verlag Berlin Heidelberg.When allocating a resource, geographical and infrastructural constraints have to be taken into account. We study the problem of distributing a resource through a network from sources endowed with the resource to citizens with claims. A link between a source and a citizen depicts the possibility of a transfer from the source to the citizen. Given the endowments at each source, the claims of citizens, and the network, the question is how to allocate the available resources among the citizens. We consider a simple allocation problem that is free of network constraints, where the total amount can be freely distributed. The simple allocation problem is a claims problem where the total amount of claims is greater than what is available. We focus on resource monotonic and anonymous bilateral principles satisfying a regularity condition and extend these principles to allocation rules on networks. We require the extension to preserve the essence of the bilateral principle for each pair of citizens in the network. We call this condition pairwise robustness with respect to the bilateral principle. We provide an algorithm and show that each bilateral principle has a unique extension which is pairwise robust (Theorem 1). Next, we consider a Rawlsian criteria of distributive justice and show that there is a unique “Rawls fair” rule that equals the extension given by the algorithm (Theorem 2). Pairwise robustness and Rawlsian fairness are two sides of the same coin, the former being a pairwise and the latter a global requirement on the allocation given by a rule. We also show as a corollary that any parametric principle can be extended to an allocation rule (Corollary 1). Finally, we give applications of the algorithm for the egalitarian, the proportional, and the contested garment bilateral principles (Example 1).

AB - © 2014, Springer-Verlag Berlin Heidelberg.When allocating a resource, geographical and infrastructural constraints have to be taken into account. We study the problem of distributing a resource through a network from sources endowed with the resource to citizens with claims. A link between a source and a citizen depicts the possibility of a transfer from the source to the citizen. Given the endowments at each source, the claims of citizens, and the network, the question is how to allocate the available resources among the citizens. We consider a simple allocation problem that is free of network constraints, where the total amount can be freely distributed. The simple allocation problem is a claims problem where the total amount of claims is greater than what is available. We focus on resource monotonic and anonymous bilateral principles satisfying a regularity condition and extend these principles to allocation rules on networks. We require the extension to preserve the essence of the bilateral principle for each pair of citizens in the network. We call this condition pairwise robustness with respect to the bilateral principle. We provide an algorithm and show that each bilateral principle has a unique extension which is pairwise robust (Theorem 1). Next, we consider a Rawlsian criteria of distributive justice and show that there is a unique “Rawls fair” rule that equals the extension given by the algorithm (Theorem 2). Pairwise robustness and Rawlsian fairness are two sides of the same coin, the former being a pairwise and the latter a global requirement on the allocation given by a rule. We also show as a corollary that any parametric principle can be extended to an allocation rule (Corollary 1). Finally, we give applications of the algorithm for the egalitarian, the proportional, and the contested garment bilateral principles (Example 1).

U2 - 10.1007/s00355-014-0815-x

DO - 10.1007/s00355-014-0815-x

M3 - Article

SP - 877

EP - 892

JO - Social Choice and Welfare

JF - Social Choice and Welfare

SN - 0176-1714

ER -