Acute Respiratory Infection Time Series Forecasting Based on Natural Language Processing Models

Producción científica: Capítulo en Libro/InformeContribución a la conferencia

Resumen

Acute respiratory infection (ARI) is a dangerous disease that without appropriate treatment can cause important consequences. Health authorities need extra information for the decision-making process. Analysis of time series can be a key factor to understand the phenomenon and provide more informed decisions. The present proposal employed two models that learn from data dependent on time, such as long short-Term memory and transformers neural networks architectures used in natural language processing. Time series was taken from the Bogota city health system during the period between 2009 to 2022. Hyperparameters from both systems were modified to find the best approach. The LSTM model holds better performance in this specific case. Information from one month back and an architecture for the neural network with two units presented the best result for the forecasting.

Idioma originalInglés estadounidense
Título de la publicación alojada2024 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2024 - Proceedings
EditoresAlvaro David Orjuela-Canon
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350374575
DOI
EstadoPublicada - 2024
Evento2024 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2024 - Bogota, Colombia
Duración: nov. 13 2024nov. 15 2024

Serie de la publicación

Nombre2024 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2024 - Proceedings

Conferencia

Conferencia2024 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2024
País/TerritorioColombia
CiudadBogota
Período11/13/2411/15/24

Áreas temáticas de ASJC Scopus

  • Inteligencia artificial
  • Informática aplicada
  • Visión artificial y reconocimiento de patrones
  • Seguridad, riesgos, fiabilidad y calidad

Citar esto