A two-state neuronal model with alternating exponential excitation

Nikita Ratanov

Producción científica: Contribución a una revistaArtículo de Investigaciónrevisión exhaustiva

6 Citas (Scopus)

Resumen

We develop a stochastic neural model based on point excitatory inputs. The nerve cell depolarisation is determined by a two-state point process corresponding the two states of the cell. The model presumes state-dependent excitatory stimuli amplitudes and decay rates of membrane potential. The state switches at each stimulus time. We analyse the neural firing time distribution and the mean firing time. The limit of the firing time at a definitive scaling condition is also obtained. The results are based on an analysis of the first crossing time of the depolarisation process through the firing threshold. The Laplace transform technique is widely used.

Idioma originalInglés estadounidense
Páginas (desde-hasta)3411-3434
Número de páginas24
PublicaciónMathematical Biosciences and Engineering
Volumen16
N.º5
DOI
EstadoPublicada - ene. 1 2019

Áreas temáticas de ASJC Scopus

  • Modelización y simulación
  • Ciencias Agrícolas y Biológicas General
  • Matemática computacional
  • Matemáticas aplicadas

Huella

Profundice en los temas de investigación de 'A two-state neuronal model with alternating exponential excitation'. En conjunto forman una huella única.

Citar esto