A global satisfaction degree method for fuzzy capacitated vehicle routing problems

Carlos Alberto Franco Franco, Juan Carlos Figueroa-Garcia

Producción científica: Contribución a una revistaArtículo de Investigaciónrevisión exhaustiva

2 Citas (Scopus)

Resumen

There are several uncertain capacitated vehicle routing problems whose delivery costs and demands cannot be estimated using deterministic/statistical methods due to a lack of available and/or reliable data. To overcome this lack of data, third–party information coming from experts can be used to represent those uncertain costs/demands as fuzzy numbers which combined to an iterative–integer programming method and a global satisfaction degree is able to find a global optimal solution. The proposed method uses two auxiliary variables
and the cumulative membership function of a fuzzy set to obtain real–valued costs and demands prior to find a deterministic solution and then iteratively find an equilibrium between fuzzy costs/demands via α and λ. The performed experiments allow us to verify the convergence of the proposed algorithm no matter the initial selection of parameters and the size of the problem/instance.
Idioma originalInglés
Número de artículo6
Páginas (desde-hasta)1-12
Número de páginas13
PublicaciónHeliyon
DOI
EstadoPublicada - 2022

Áreas temáticas de ASJC Scopus

  • Ciencias sociales (miscelánea)

Citar esto