A data-driven approach to physical fatigue management using wearable sensors to classify four diagnostic fatigue states

Maria J. Pinto-Bernal, Carlos A. Cifuentes, Oscar Perdomo, Monica Rincón-Roncancio, Marcela Múnera

Producción científica: Contribución a una revistaArtículo de Investigaciónrevisión exhaustiva

16 Citas (Scopus)

Resumen

Physical exercise contributes to the success of rehabilitation programs and rehabilitation processes assisted through social robots. However, the amount and intensity of exercise needed to obtain positive results are unknown. Several considerations must be kept in mind for its imple-mentation in rehabilitation, as monitoring of patients’ intensity, which is essential to avoid extreme fatigue conditions, may cause physical and physiological complications. The use of machine learning models has been implemented in fatigue management, but is limited in practice due to the lack of understanding of how an individual’s performance deteriorates with fatigue; this can vary based on physical exercise, environment, and the individual’s characteristics. As a first step, this paper lays the foundation for a data analytic approach to managing fatigue in walking tasks. The proposed framework establishes the criteria for a feature and machine learning algorithm selection for fatigue management, classifying four fatigue diagnoses states. Based on the proposed framework and the classifier implemented, the random forest model presented the best performance with an average accuracy of ≥98% and F-score of ≥93%. This model was comprised of ≤16 features. In addition, the prediction performance was analyzed by limiting the sensors used from four IMUs to two or even one IMU with an overall performance of ≥88%.

Idioma originalInglés estadounidense
Número de artículo6401
PublicaciónSensors
Volumen21
N.º19
DOI
EstadoPublicada - sep. 25 2021

Áreas temáticas de ASJC Scopus

  • Química analítica
  • Sistemas de información
  • Óptica y física atómica y molecular
  • Bioquímica
  • Instrumental
  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'A data-driven approach to physical fatigue management using wearable sensors to classify four diagnostic fatigue states'. En conjunto forman una huella única.

Citar esto