A class of population dynamics for reaching epsilon-equilibria: Engineering applications

German Obando, Julian Barreiro-Gomez, Nicanor Quijano

Resultado de la investigación: Capítulo en Libro/Reporte/ConferenciaContribución a la conferencia

3 Citas (Scopus)

Resumen

This document proposes a novel class of population dynamics that are parameterized by a nonnegative scalar ϵ. We show that any rest point of the proposed dynamics corresponds to an ϵ-equilibrium of the underlying population game. In order to derive this class of population dynamics, our approach is twofold. First, we use an extension of the pairwise comparison revision protocol and the classic mean dynamics for well-mixed populations. This approach requires full-information. Second, we employ the same revision protocol and a version of the mean dynamics for non-well-mixed populations that uses only local information. Furthermore, invariance properties of the set of allowed population states are analyzed, and stability of the ϵ-equilibria is formally proven. Finally, two engineering examples based on the ϵ-dynamics are presented: A control scenario in which noisy measurements should be mitigated, and a humanitarian engineering application related to wealth distribution in poor societies.

Idioma originalInglés estadounidense
Título de la publicación alojada2016 American Control Conference, ACC 2016
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas4713-4718
Número de páginas6
ISBN (versión digital)9781467386821
DOI
EstadoPublicada - jul 28 2016
Publicado de forma externa
Evento2016 American Control Conference, ACC 2016 - Boston, Estados Unidos
Duración: jul 6 2016jul 8 2016

Serie de la publicación

NombreProceedings of the American Control Conference
Volumen2016-July
ISSN (versión impresa)0743-1619

Conferencia

Conferencia2016 American Control Conference, ACC 2016
País/TerritorioEstados Unidos
CiudadBoston
Período7/6/167/8/16

All Science Journal Classification (ASJC) codes

  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'A class of population dynamics for reaching epsilon-equilibria: Engineering applications'. En conjunto forman una huella única.

Citar esto