TY - JOUR
T1 - Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia
T2 - Parasite infection, feeding sources and discrete typing units
AU - Hernández, Carolina
AU - Salazar, Camilo
AU - Brochero, Helena
AU - Teherán, Aníbal
AU - Buitrago, Luz Stella
AU - Vera, Mauricio
AU - Soto, Hugo
AU - Florez-Rivadeneira, Zulibeth
AU - Ardila, Sussane
AU - Parra-Henao, Gabriel
AU - Ramírez, Juan David
N1 - Funding Information:
This work was funded by Institutional Funds (Dirección de Investigación, Universidad del Rosario) and “Departamento Administrativo Nacional de Ciencia y Tecnología de Colombia Francisco José de Caldas - COLCIENCIAS” by Convocatoria 727 de 2015, de Doctorados Nacionales.
Publisher Copyright:
© 2016 The Author(s).
PY - 2016/1/12
Y1 - 2016/1/12
N2 - Background: Trypanosoma cruzi is the causative agent of Chagas disease. Due to its genetic diversity has been classified into six Discrete Typing Units (DTUs) in association with transmission cycles. In Colombia, natural T. cruzi infection has been detected in 15 triatomine species. There is scarce information regarding the infection rates, DTUs and feeding preferences of secondary vectors. Therefore, the aim of this study was to determine T. cruzi infection rates, parasite DTU, ecotopes, insect stages, geographical location and bug feeding preferences across six different triatomine species. Methods: A total of 245 insects were collected in seven departments of Colombia. We conducted molecular detection and genotyping of T. cruzi with subsequent identification of food sources. The frequency of infection, DTUs, TcI genotypes and feeding sources were plotted across the six species studied. A logistic regression model risk was estimated with insects positive for T. cruzi according to demographic and eco-epidemiological characteristics. Results: We collected 85 specimens of Panstrongylus geniculatus, 77 Rhodnius prolixus, 37 R. pallescens, 34 Triatoma maculata, 8 R. pictipes and 4 T. dimidiata. The overall T. cruzi infection rate was 61.2% and presented statistical associations with the departments Meta (OR: 2.65; 95% CI: 1.69-4.17) and Guajira (OR: 2.13; 95% CI: 1.16-3.94); peridomestic ecotope (OR: 2.52: 95% CI: 1.62-3.93); the vector species P. geniculatus (OR: 2.40; 95% CI: 1.51-3.82) and T. maculata (OR: 2.09; 95% CI: 1.02-4.29); females (OR: 2.05; 95% CI: 1.39-3.04) and feeding on opossum (OR: 3.15; 95% CI: 1.85-11.69) and human blood (OR: 1.55; 95% CI: 1.07-2.24). Regarding the DTUs, we observed TcI (67.3%), TcII (6.7%), TcIII (8.7%), TcIV (4.0%) and TcV (6.0%). Across the samples typed as TcI, we detected TcIDom (19%) and sylvatic TcI (75%). The frequencies of feeding sources were 59.4% (human blood); 11.2% (hen); 9.6% (bat); 5.6% (opossum); 5.1% (mouse); 4.1% (dog); 3.0% (rodent); 1.0% (armadillo); and 1.0% (cow). Conclusions: New scenarios of T. cruzi transmission caused by secondary and sylvatic vectors are considered. The findings of sylvatic DTUs from bugs collected in domestic and peridomestic ecotopes confirms the emerging transmission scenarios in Colombia.
AB - Background: Trypanosoma cruzi is the causative agent of Chagas disease. Due to its genetic diversity has been classified into six Discrete Typing Units (DTUs) in association with transmission cycles. In Colombia, natural T. cruzi infection has been detected in 15 triatomine species. There is scarce information regarding the infection rates, DTUs and feeding preferences of secondary vectors. Therefore, the aim of this study was to determine T. cruzi infection rates, parasite DTU, ecotopes, insect stages, geographical location and bug feeding preferences across six different triatomine species. Methods: A total of 245 insects were collected in seven departments of Colombia. We conducted molecular detection and genotyping of T. cruzi with subsequent identification of food sources. The frequency of infection, DTUs, TcI genotypes and feeding sources were plotted across the six species studied. A logistic regression model risk was estimated with insects positive for T. cruzi according to demographic and eco-epidemiological characteristics. Results: We collected 85 specimens of Panstrongylus geniculatus, 77 Rhodnius prolixus, 37 R. pallescens, 34 Triatoma maculata, 8 R. pictipes and 4 T. dimidiata. The overall T. cruzi infection rate was 61.2% and presented statistical associations with the departments Meta (OR: 2.65; 95% CI: 1.69-4.17) and Guajira (OR: 2.13; 95% CI: 1.16-3.94); peridomestic ecotope (OR: 2.52: 95% CI: 1.62-3.93); the vector species P. geniculatus (OR: 2.40; 95% CI: 1.51-3.82) and T. maculata (OR: 2.09; 95% CI: 1.02-4.29); females (OR: 2.05; 95% CI: 1.39-3.04) and feeding on opossum (OR: 3.15; 95% CI: 1.85-11.69) and human blood (OR: 1.55; 95% CI: 1.07-2.24). Regarding the DTUs, we observed TcI (67.3%), TcII (6.7%), TcIII (8.7%), TcIV (4.0%) and TcV (6.0%). Across the samples typed as TcI, we detected TcIDom (19%) and sylvatic TcI (75%). The frequencies of feeding sources were 59.4% (human blood); 11.2% (hen); 9.6% (bat); 5.6% (opossum); 5.1% (mouse); 4.1% (dog); 3.0% (rodent); 1.0% (armadillo); and 1.0% (cow). Conclusions: New scenarios of T. cruzi transmission caused by secondary and sylvatic vectors are considered. The findings of sylvatic DTUs from bugs collected in domestic and peridomestic ecotopes confirms the emerging transmission scenarios in Colombia.
UR - http://www.scopus.com/inward/record.url?scp=85000977871&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85000977871&partnerID=8YFLogxK
U2 - 10.1186/s13071-016-1907-5
DO - 10.1186/s13071-016-1907-5
M3 - Research Article
C2 - 27903288
AN - SCOPUS:85000977871
SN - 1756-3305
VL - 9
JO - Parasites and Vectors
JF - Parasites and Vectors
IS - 1
M1 - 620
ER -