TY - GEN
T1 - Time Series Forecasting using Recurrent Neural Networks modified by Bayesian Inference in the Learning Process
AU - Rivero, Cristian Rodriguez
AU - Pucheta, Julian
AU - Otaño, Paula
AU - Orjuela-Cañon, Alvaro David
AU - Patiño, Daniel
AU - Franco, Leonardo
AU - Gorrostieta, Efren
AU - Puglisi, Jose Luis
AU - Juarez, Gustavo
PY - 2019/6
Y1 - 2019/6
N2 - Typically, time series forecasting is done by using models based directly on the past observations from the same sequence. In these cases, when the model is learning from data, there is not an extra quantity of noiseless data available and computational resources are unlimited. In practice, it is necessary to deal with finite noisy datasets, which lead to uncertainty about what so appropriate the model is. For this, the employment of models based on Bayesian inference are preferable. Then, probabilities are treated as a way to represent the subjective uncertainty from rational agent, performing an approximated inference by maximizing a lower bound on the marginal likelihood. A modified algorithm using long-short memory recurrent neural networks for time series forecasting was presented. This new approach was chosen in order to be as close as possible to the original series in the sense of minimizing the associated Kullback-Leibler Information Criterion. A simulation study was conducted to evaluate and illustrate results, comparing this approach with Bayesian neural-networks-based algorithms for artificial chaotic time-series.
AB - Typically, time series forecasting is done by using models based directly on the past observations from the same sequence. In these cases, when the model is learning from data, there is not an extra quantity of noiseless data available and computational resources are unlimited. In practice, it is necessary to deal with finite noisy datasets, which lead to uncertainty about what so appropriate the model is. For this, the employment of models based on Bayesian inference are preferable. Then, probabilities are treated as a way to represent the subjective uncertainty from rational agent, performing an approximated inference by maximizing a lower bound on the marginal likelihood. A modified algorithm using long-short memory recurrent neural networks for time series forecasting was presented. This new approach was chosen in order to be as close as possible to the original series in the sense of minimizing the associated Kullback-Leibler Information Criterion. A simulation study was conducted to evaluate and illustrate results, comparing this approach with Bayesian neural-networks-based algorithms for artificial chaotic time-series.
UR - http://www.scopus.com/inward/record.url?scp=85070921034&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070921034&partnerID=8YFLogxK
U2 - 10.1109/ColCACI.2019.8781984
DO - 10.1109/ColCACI.2019.8781984
M3 - Conference contribution
T3 - 2019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019 - Proceedings
BT - 2019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019 - Proceedings
A2 - Orjuela-Canon, Alvaro David
PB - Institute of Electrical and Electronics Engineers Inc.
CY - Barranquilla
T2 - 2019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019
Y2 - 5 June 2019 through 7 June 2019
ER -