Theoretical description of R–X· · · NH3 halogen bond complexes: Effect of the R group on the complex stability and sigma-hole electron depletion

Juan Zurita, Vladimir Rodriguez, Cesar Zambrano, Jose Ramón Mora, Luis Rincón, F. Javier Torres

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


In the present work, a number of R–X· · · NH3 (X = Cl, Br, and I) halogen bonded systems were theoretical studied by means of DFT calculations performed at the ωB97XD/6-31+G(d,p) level of theory in order to get insights on the effect of the electron-donating or electron-withdrawing character of the different R substituent groups (R = halogen, methyl, partially fluorinated methyl, perfluoro-methyl, ethyl, vinyl, and acetyl) on the stability of the halogen bond. The results indicate that the relative stability of the halogen bond follows the Cl < Br < I trend considering the same R substituent whereas the more electron-withdrawing character of the R substituent the more stable the halogen bond. Refinement of the latter results, performed at the MP2/6-31+G(d,p) level showed that the DFT and the MP2 binding energies correlate remarkably well, suggesting that the Grimme’s type dispersion-corrected functional produces reasonable structural and energetic features of halogen bond systems. DFT results were also observed to agree with more refined calculations performed at the CCSD(T) level. In a further stage, a more thorough analysis of the R–Br· · · NH3 complexes was performed by means of a novel electron localization/delocalization tool, defined in terms of an Information Theory, IT, based quantity obtained from the conditional pair density. For the latter, our in-house developed C++/CUDA program, called KLD (acronym of Kullback–Leibler divergence), was employed. KLD results mapped onto the one-electron density plotted at a 0.04 a.u. isovalue, showed that (i) as expected, the localized electron depletion of the Br sigma-hole is largely affected by the electron-withdrawing character of the R substituent group and (ii) the R–X bond is significantly polarized due to the presence of the NH3 molecule in the complexes. The afore-mentioned constitutes a clear indication of the dominant character of electrostatics on the stabilization of halogen bonds in agreement with a number of studies reported in the main literature. Finally, the cooperative effects on the [Br—CN]n system (n = 1–8) was evaluated at the MP2/6-31+G(d,p) level, where it was observed that an increase of about ~14.2% on the complex stability is obtained when going from n = 2 to n = 8. The latter results were corroborated by the analysis of the changes on the Fermi-hole localization pattern on the halogen bond zones, which suggests an also important contribution of the electron correlation in the stabilization of these systems.

Original languageEnglish (US)
Article number530
Issue number3
StatePublished - Jan 25 2020
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Cite this