The status and challenge of global fire modelling

Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang LiStephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. Van Der Werf, Apostolos Voulgarakis, Chao Yue

Research output: Contribution to journalResearch Articlepeer-review

272 Scopus citations

Abstract

Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.

Original languageEnglish (US)
Pages (from-to)3359-3375
Number of pages17
JournalBiogeosciences
Volume13
Issue number11
DOIs
StatePublished - Jun 9 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Earth-Surface Processes

Fingerprint

Dive into the research topics of 'The status and challenge of global fire modelling'. Together they form a unique fingerprint.

Cite this