TY - JOUR
T1 - Role of chromosomal instability and clonal heterogeneity in the therapy response of breast cancer cell lines
AU - Vargas-Rondón, Natalia
AU - Pérez-Mora, Erika
AU - Villegas, Victoria E.
AU - Rondón-Lagos, Milena
N1 - Funding Information:
This research was funded by Universidad Pedagógica y Tecnológica de Colombia (Grant No. DIN 14-2017). We thank Dr. Nelson Rangel for the excellent assistance with statistical analysis and reading of the manuscript. We thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.
Publisher Copyright:
Copyright © 2020 by Cancer Biology & Medicine.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12/15
Y1 - 2020/12/15
N2 - Objective: Chromosomal instability (CIN) is a hallmark of cancer characterized by cell-to-cell variability in the number or structure of chromosomes, frequently observed in cancer cell populations and is associated with poor prognosis, metastasis, and therapeutic resistance. Breast cancer (BC) is characterized by unstable karyotypes and recent reports have indicated that CIN may influence the response of BC to chemotherapy regimens. However, paradoxical associations between extreme CIN and improved outcome have been observed. Methods: This study aimed to 1) evaluate CIN levels and clonal heterogeneity (CH) in MCF7, ZR-751, MDA-MB468, BT474, and KPL4 BC cells treated with low doses of tamoxifen (TAM), docetaxel (DOC), doxorubicin (DOX), Herceptin (HT), and combined treatments (TAM/DOC, TAM/DOX, TAM/HT, HT/DOC, and HT/DOX) by using fluorescence in situ hybridization (FISH), and 2) examine the association with response to treatments by comparing FISH results with cell proliferation. Results: Intermediate CIN was linked to drug sensitivity according to three characteristics: estrogen receptor α (ERα) and HER2 status, pre-existing CIN level in cancer cells, and the CIN induced by the treatments. ERα+/HER2- cells with intermediate CIN were sensitive to treatment with taxanes (DOC) and anthracyclines (DOX), while ERα-/HER2-, ERα+/HER2+, and ERα-/HER2+ cells with intermediate CIN were resistant to these treatments. Conclusions: A greater understanding of CIN and CH in BC could assist in the optimization of existing therapeutic regimens and/or in supporting new strategies to improve cancer outcomes.
AB - Objective: Chromosomal instability (CIN) is a hallmark of cancer characterized by cell-to-cell variability in the number or structure of chromosomes, frequently observed in cancer cell populations and is associated with poor prognosis, metastasis, and therapeutic resistance. Breast cancer (BC) is characterized by unstable karyotypes and recent reports have indicated that CIN may influence the response of BC to chemotherapy regimens. However, paradoxical associations between extreme CIN and improved outcome have been observed. Methods: This study aimed to 1) evaluate CIN levels and clonal heterogeneity (CH) in MCF7, ZR-751, MDA-MB468, BT474, and KPL4 BC cells treated with low doses of tamoxifen (TAM), docetaxel (DOC), doxorubicin (DOX), Herceptin (HT), and combined treatments (TAM/DOC, TAM/DOX, TAM/HT, HT/DOC, and HT/DOX) by using fluorescence in situ hybridization (FISH), and 2) examine the association with response to treatments by comparing FISH results with cell proliferation. Results: Intermediate CIN was linked to drug sensitivity according to three characteristics: estrogen receptor α (ERα) and HER2 status, pre-existing CIN level in cancer cells, and the CIN induced by the treatments. ERα+/HER2- cells with intermediate CIN were sensitive to treatment with taxanes (DOC) and anthracyclines (DOX), while ERα-/HER2-, ERα+/HER2+, and ERα-/HER2+ cells with intermediate CIN were resistant to these treatments. Conclusions: A greater understanding of CIN and CH in BC could assist in the optimization of existing therapeutic regimens and/or in supporting new strategies to improve cancer outcomes.
UR - http://www.scopus.com/inward/record.url?scp=85097601436&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097601436&partnerID=8YFLogxK
M3 - Research Article
C2 - 33299647
AN - SCOPUS:85097601436
SN - 2095-3941
VL - 17
SP - 970
EP - 985
JO - Cancer Biology and Medicine
JF - Cancer Biology and Medicine
IS - 4
ER -