Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment

Hugo F. Posada-Quintero, John P. Florian, Alvaro D. Orjuela-Cañón, Tomas Aljama-Corrales, Sonia Charleston-Villalobos, Ki H. Chon

Research output: Contribution to journalResearch Articlepeer-review

130 Scopus citations

Abstract

Time-domain features of electrodermal activity (EDA), the measurable changes in conductance at the skin surface, are typically used to assess overall activation of the sympathetic system. These time domain features, the skin conductance level (SCL) and the nonspecific skin conductance responses (NS.SCRs), are consistently elevated with sympathetic nervous arousal, but highly variable between subjects. A novel frequency-domain approach to quantify sympathetic function using the power spectral density (PSD) of EDA is proposed. This analysis was used to examine if some of the induced stimuli invoke the sympathetic nervous system’s dynamics which can be discernible as a large spectral peak, conjectured to be present in the low frequency band. The resulting indices were compared to the power of low-frequency components of heart rate variability (HRVLF) time series, as well as to time-domain features of EDA. Twelve healthy subjects were subjected to orthostatic, physical and cognitive stress, to test these techniques. We found that the increase in the spectral powers of the EDA was largely confined to 0.045–0.15 Hz, which is in the prescribed band for HRVLF. These low frequency components are known to be, in part, influenced by the sympathetic nervous dynamics. However, we found an additional 5–10% of the spectral power in the frequency range of 0.15–0.25 Hz with all three stimuli. Thus, dynamics of the normalized sympathetic component of the EDA, termed EDASympn, are represented in the frequency band 0.045–0.25 Hz; only a small amount of spectral power is present in frequencies higher than 0.25 Hz. Our results showed that the time-domain indices (the SCL and NS.SCRs), and EDASympn, exhibited significant increases under orthostatic, physical, and cognitive stress. However, EDASympn was more responsive than the SCL and NS.SCRs to the cold pressor stimulus, while the latter two were more sensitive to the postural and Stroop tests. Additionally, EDASympn exhibited an acceptable degree of consistency and a lower coefficient of variation compared to the time-domain features. Therefore, PSD analysis of EDA is a promising technique for sympathetic function assessment.

Original languageEnglish (US)
Pages (from-to)3124-3135
Number of pages12
JournalAnnals of Biomedical Engineering
Volume44
Issue number10
DOIs
StatePublished - Oct 1 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment'. Together they form a unique fingerprint.

Cite this