TY - JOUR
T1 - On the thermodynamic stability of the intermolecular association between Lewis acids and Lewis bases
T2 - a DFT study
AU - Becerra, Marcos
AU - Real-Enriquez, Misael
AU - Espinosa-Gavilanes, Carlos
AU - Zambrano, Cesar H.
AU - Almeida, Rafael
AU - Torres, F. Javier
AU - Rincón, Luis
N1 - Funding Information:
This work has been performed by employing the resources of the USFQ’s High Performance Computing system (HPC-USFQ). The authors would like to thank USFQ’s chancellor and collaboration grants program for financial support.
Publisher Copyright:
© 2016, Springer-Verlag Berlin Heidelberg.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - The intermolecular association of twelve combinations of six different Lewis acids and Lewis bases (i.e., R3A–BR′3 where A = B and Al; B = N and P; R = H, F, and C6F5; R′ = H, CH3, and C(CH3)3) was theoretically described by means of DFT calculations using the dispersion-corrected ωB97x-D and B97D functionals in conjunction with the 6-311++G(2d,2p) basis set including toluene as solvent through the PCM-SMD implicit solvent scheme. All the studied Lewis pairs appeared to be stable on the basis of computed BSSE-corrected interaction energies; however, the free energies of formation computed in solution (ΔGsolv) indicate that three Lewis acid–base combinations can be considered frustrated Lewis pairs (FLPs). Besides, the four features that characterize FLPs are: (1) large distances between the acid and base centers, (2) negligible changes in the geometry of the acid, (3) weak interaction energies, and (4) non-covalent dispersion energy contributing to almost the entire interaction energy. In the present work, we introduce two ad hoc indexes intended to quantify separately the electronic and steric factors, which have a direct effect in the intermolecular association of Lewis acids and Lewis bases and can be used to distinguished FLPs from classical Lewis adducts. Based on the aforementioned ad hoc indexes, the existence of a new kind of complexes that are “intermediate” between classical complexes and FLPs is proposed.
AB - The intermolecular association of twelve combinations of six different Lewis acids and Lewis bases (i.e., R3A–BR′3 where A = B and Al; B = N and P; R = H, F, and C6F5; R′ = H, CH3, and C(CH3)3) was theoretically described by means of DFT calculations using the dispersion-corrected ωB97x-D and B97D functionals in conjunction with the 6-311++G(2d,2p) basis set including toluene as solvent through the PCM-SMD implicit solvent scheme. All the studied Lewis pairs appeared to be stable on the basis of computed BSSE-corrected interaction energies; however, the free energies of formation computed in solution (ΔGsolv) indicate that three Lewis acid–base combinations can be considered frustrated Lewis pairs (FLPs). Besides, the four features that characterize FLPs are: (1) large distances between the acid and base centers, (2) negligible changes in the geometry of the acid, (3) weak interaction energies, and (4) non-covalent dispersion energy contributing to almost the entire interaction energy. In the present work, we introduce two ad hoc indexes intended to quantify separately the electronic and steric factors, which have a direct effect in the intermolecular association of Lewis acids and Lewis bases and can be used to distinguished FLPs from classical Lewis adducts. Based on the aforementioned ad hoc indexes, the existence of a new kind of complexes that are “intermediate” between classical complexes and FLPs is proposed.
UR - http://www.scopus.com/inward/record.url?scp=84959316921&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959316921&partnerID=8YFLogxK
U2 - 10.1007/s00214-016-1829-5
DO - 10.1007/s00214-016-1829-5
M3 - Research Article
AN - SCOPUS:84959316921
SN - 1432-881X
VL - 135
SP - 1
EP - 11
JO - Theoretical Chemistry Accounts
JF - Theoretical Chemistry Accounts
IS - 3
M1 - 77
ER -