Nitrogen doped graphene generated by microwave plasma and reduction expansion synthesis

Pedro J. Arias-Monje, Sarath K. Menon, Hugo Zea, Sebastian Osswald, Claudia C. Luhrs

Research output: Contribution to journalResearch Articlepeer-review

10 Scopus citations

Abstract

This work aimed to produce nitrogen doped graphene from Graphite Oxide (GO) by combining the Expansion Reduction Synthesis (RES) approach, which utilizes urea as doping/reducing agent, with the use of an Atmospheric Plasma torch (Plasma), which provides the high temperature reactor environment known to thermally exfoliate it. The use of this combined strategy (Plasma-RES) was tried in an attempt to increase the surface area of the products. The amount of nitrogen doping was controlled by varying the urea/GO mass ratios in the precursor powders. X-ray diffraction analysis, SEM, TEM, BET surface areas and conductivity measurements of the diverse products are presented. Nitrogen inclusion in the graphene samples was corroborated by the mass spectral signal of the evolved gases generated during thermal programmed oxidation experiments of the products and by EDX analysis. We found that the Plasma-RES method can successfully generate doped graphene in situ as the urea and GO precursors simultaneously decompose and reduce in the discharge zone. When using the same amount of urea in the precursor mixture, samples obtained by Plasma-RES have higher surface area than those generated by RES, however, they contain a smaller nitrogen content.

Original languageEnglish (US)
Pages (from-to)120-128
Number of pages9
JournalNanoscience and Nanotechnology Letters
Volume8
Issue number2
DOIs
StatePublished - Feb 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Materials Science

Cite this