TY - JOUR
T1 - Measurement of neurovascular coupling in neonates
AU - Hendrikx, Dries
AU - Smits, Anne
AU - Lavanga, Mario
AU - De Wel, Ofelie
AU - Thewissen, Liesbeth
AU - Jansen, Katrien
AU - Caicedo, Alexander
AU - Van Huffel, Sabine
AU - Naulaers, Gunnar
N1 - Funding Information:
The authors acknowledge the financial support of Bijzonder Onderzoeksfonds KU Leuven (BOF): SPARKLE – Sensor-based Platform for the Accurate and Remote monitoring of Kinematics Linked to E-health #: IDO-13-0358, The effect of perinatal stress on the later outcome in preterm babies #: C24/15/036, and TARGID – Development of a novel diagnostic medical device to assess gastric motility #: C32-16-00364; Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO): Hercules Foundation (AKUL 043) ‘Flanders BCI Lab -High-End, Modular EEG Equipment for Brain Computer Interfacing’; Agentschap Innoveren en Ondernemen (VLAIO): 150466: OSA+, and O&O HBC 2016 0184 eWatch; imec funds 2017; imec ICON projects: ICON HBC.2016.0167, ‘SeizeIT’; Belgian Foreign Affairs-Development Cooperation: VLIR UOS programs (2013–2019); EU: European Union’s Seventh Framework Program (FP7/2007–2013) The HIP Trial: #260777, EU H2020 FETOPEN ‘AMPHORA’ #766456, EU EFRO Interreg: Nano4Sports, EU H2020 MSCA-ITN-2018: ‘INtegrating Magnetic Resonance SPectroscopy and Multimodal Imaging for Research and Education in MEDicine (INSPiRE-MED)’, funded by the European Commission under Grant Agreement #813120, and EU H2020 MSCA-ITN-2018: ‘INtegrating Functional Assessment measures for Neonatal Safeguard (INFANS)’, funded by the European Commission under Grant Agreement #813483. ERASMUS+: INGDIVS 2016-1-SE01-KA203-022114; European Research Council: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007–2013)/ERC Advanced Grant: BIOTENSORS (n◦ 339804). This paper reflects only the authors’ views and the Union is not liable for any use that may be made of the contained information. Dries Hendrikx and Mario Lavanga are SB Ph.D. fellows at Fonds voor Wetenschappelijk Onderzoek (FWO), Vlaanderen, supported by the Flemish government. The research activities of AS are supported by the Clinical Research and Education Council of the University Hospitals Leuven.
Publisher Copyright:
© 2019 Hendrikx, Smits, Lavanga, De Wel, Thewissen, Jansen, Caicedo, Van Huffel and Naulaers. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019
Y1 - 2019
N2 - Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments.
AB - Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments.
UR - http://www.scopus.com/inward/record.url?scp=85065912268&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065912268&partnerID=8YFLogxK
U2 - 10.3389/fphys.2019.00065
DO - 10.3389/fphys.2019.00065
M3 - Review article
C2 - 30833901
AN - SCOPUS:85065912268
SN - 1664-042X
VL - 10
JO - Frontiers in Physiology
JF - Frontiers in Physiology
IS - FEB
M1 - 65
ER -